首页> 外文学位 >Laser noise mitigation through time delay interferometry for space-based gravitational wave interferometers using the UF laser interferometry simulator.
【24h】

Laser noise mitigation through time delay interferometry for space-based gravitational wave interferometers using the UF laser interferometry simulator.

机译:通过使用UF激光干涉仪模拟器的天基重力波干涉仪通过延时干涉仪减轻激光噪声。

获取原文
获取原文并翻译 | 示例

摘要

The existence of gravitational waves was theorized in 1916 by Albert Einstein in accordance with the linearized theory of general relativity. Most experiments and observations to date have supported general relativity, but now, nearly 100 years later, the scientific community has yet devise a method to directly measure gravitational radiation. With the first attempts towards a gravitational wave measurement in the 1960s, many methods have been proposed and tested since then, all failing thus far to provide a positive detection. The most promising gravitational radiation detection method is through the use of a space-based laser interferometer and with the advancement of modern technologies, these space-based gravitational wave measurements will eventually provide important scientific data to physics, astro-physics, and astronomy communities.;The Laser Interferometer Space Antenna (LISA) is one such space-based laser interferometer. LISA’s proposed design objective is to measure gravitational radiation in the frequency range from 30 µHz to 1 Hz using a modified Michelson interferometer. The interferometer arms are 5 Gm in length measured between each of the 3 spacecraft in the interferometer constellation. The differential arm-length will be measured to an accuracy of 18 pm/ Hz resulting in a baseline strain sensitivity of 3.6 × 10 –21 / Hz . Unfortunately, the dynamics of the spacecraft orbits complicate the differential arm-length measurements. The arms of the interferometer change in length resulting in time-dependent, unequal arm-lengths and laser Doppler shifts. Thus, to cancel the laser noise, laser beatnotes are formed between lasers on separate SC and, using these one-way laser phase measurements, one can reconstruct an equal-arm interferometer in post-processing. This is commonly referred to as time-delay interferometry (TDI) and can be exploited to cancel the laser phase noise and extract the gravitational wave (GW) induced arm-length strain.;The author has assisted in the development and enhancement of The University of Florida Laser Interferometry Simulator (UFLIS) to perform more accurate LISA-like simulations. UFLIS is a hardware-in-the-loop simulator of the LISA interferometry system replicating as many of the characteristics of the LISA mission as possible. This includes the development of laser pre-stabilization systems, the modeling of the delayed inter-SC laser phase transmission, and the µcycle phase measurements of MHz laser beatnotes.;The content of this dissertation discusses the general GW detection methods and possible GW sources as well as the specific characteristics of the LISA mission’s design. A theoretical analysis of the phasemeter and TDI performance is presented along with experimental verification measurements. The development of UFLIS is described including a comparison of the UFLIS noise sources with the actual LISA mission. Finally, the enhanced UFLIS design is used to perform a second-order TDI simulation with artificial GW injection. The results are presented along with an analysis of relevant LISA characteristics and GW data-extraction methods.
机译:引力波的存在是根据广义相对论的线性化理论于1916年由爱因斯坦(Albert Einstein)提出的。迄今为止,大多数实验和观察都支持广义相对论,但是现在,近100年后,科学界尚未设计出一种直接测量重力辐射的方法。自1960年代首次尝试进行重力波测量以来,自那时以来已提出并测试了许多方法,到目前为止,所有方法都未能提供肯定的检测结果。最有前途的引力辐射探测方法是通过使用天基激光干涉仪,并随着现代技术的发展,这些天基引力波测量最终将为物理学,天体物理学和天文学界提供重要的科学数据。 ;激光干涉仪空间天线(LISA)就是这样一种基于空间的激光干涉仪。 LISA提出的设计目标是使用改良的迈克尔逊干涉仪测量30 µHz至1 Hz频率范围内的重力辐射。干涉仪臂的长度为5 Gm,在干涉仪星座中的3个航天器之间进行测量。臂长的差异将被测量为18 pm / Hz的精度,从而导致基线应变灵敏度为3.6×10 –21 / Hz。不幸的是,航天器轨道的动力学使不同的臂长测量变得复杂。干涉仪的臂长会发生变化,从而导致与时间有关的臂长不相等以及激光多普勒频移。因此,为了消除激光噪声,在单独的SC上的激光器之间形成了激光节拍,使用这些单向激光相位测量结果,可以在后处理中重建等臂干涉仪。这通常被称为时延干涉测量法(TDI),可用于消除激光相位噪声并提取重力波(GW)引起的臂长应变。;作者协助大学的发展和完善佛罗里达激光干涉仪模拟器(UFLIS)可以执行更准确的类似LISA的模拟。 UFLIS是LISA干涉测量系统的硬件在环仿真器,它尽可能地复制了LISA任务的许多特征。这包括激光预稳定系统的开发,延迟的SC间激光间相位传输的建模以及MHz激光拍子的微周期相位测量。;本文的内容讨论了一般的GW检测方法和可能的GW来源,包括以及LISA任务设计的特定特征。给出了相位计和TDI性能的理论分析以及实验验证测量。描述了UFLIS的发展,包括将UFLIS噪声源与实际LISA任务进行比较。最后,增强的UFLIS设计用于通过人工GW注入执行二阶TDI仿真。给出了结果,并分析了相关的LISA特征和GW数据提取方法。

著录项

  • 作者

    Mitryk, Shawn J.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.;Physics Astrophysics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号