首页> 外文学位 >Influence of scale on the inerting of dust explosions.
【24h】

Influence of scale on the inerting of dust explosions.

机译:规模对粉尘爆炸惰性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Experiments were performed to compare intermediate-scale (1-m3) and laboratory-scale (20-L) inerting results. In general, laboratory-scale inerting levels were higher than intermediate-scale values. This can be attributed to the use of a strong ignition source to initiate the inerting experiments, which may have overdriven the explosions in the smaller test vessel. Previously reported agreement between the smaller test vessel and full-scale experiments may be due to overdriving in the 20-L chamber, leading to high inerting levels similar to those encountered in full-scale tests due to flame acceleration. Use of weaker ignition sources in the laboratory-scale chamber did produce inerting levels similar to those observed in the intermediate-scale vessel.; A new flammability limit parameter has been defined by J. Going, K. Chatrathi, P. Amyotte and A. G. Dastidar as the Minimum Inerting Concentration (MIC; in units of mass concentration, i.e. g/m3). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike Corporation (Blue Springs, MO) in a 1-m 3 spherical chamber has shown this flammability limit to exist for coal dust when inerting with monoammonium phosphate, sodium bicarbonate and lime stone. The MIC also existed for cornstarch powder when inerting with sodium bicarbonate. In the current work, inerting experiments on a larger variety of dusts were performed in a spherical 1-m3 chamber and a 20-L Siwek chamber using identical materials. The results show that an MIC can be determined for some materials in both chambers.; Calculated adiabatic flame temperatures (CAFT), along with a selected limit flame temperature for combustion propagation, have been used in determining the flammability envelope for hydrocarbon gases. The current work discusses the use of this methodology to determine the flammability of solid fuel/oxidizer/inertant mixtures based upon previous work by other researchers. Their model has been modified to allow for comparisons between inerting levels determined in a 20-L chamber and a 1-m3 chamber. The results indicate that the 20-L and 1-m3 models can be used to predict the experimental inerting levels of the 1-m3 chamber, with limitations. Ultimately, the utility of this modified CAFT and limit flame temperature model as a predictive/screening tool for inerting level and minimum inerting concentration determination has been demonstrated to perform well at low fuel dust concentrations.
机译:进行实验以比较中等规模(1-m3)和实验室规模(20-L)的惰化结果。通常,实验室规模的惰化水平高于中等规模的值。这可以归因于使用强大的点火源来启动惰化实验,该实验可能会使较小的测试容器中的爆炸超速运转。先前报道的较小的测试容器和满量程实验之间的协议可能是由于20升腔室中的过度驱动,导致高惰化水平,类似于因火焰加速而在满量程试验中遇到的高惰化水平。在实验室规模的燃烧室中使用较弱的点火源确实会产生类似于在中等规模的容器中观察到的惰性水平。 J. Going,K。Chatrathi,P。Amyotte和A. G. Dastidar已定义了新的可燃性极限参数,作为最小惰性浓度(MIC),以质量浓度为单位,即g / m3。这是防止粉尘爆炸所需的惰性剂浓度,与燃料浓度无关。 Fike Corporation(Blue Springs,MO)在1 m 3球形腔中的先前实验工作表明,当用磷酸一铵,碳酸氢钠和石灰石惰化时,煤尘存在这种可燃性极限。当用碳酸氢钠惰化时,MIC也存在于玉米淀粉粉末中。在目前的工作中,使用相同的材​​料在球形的1-m3腔室和20-L的Siwek腔室中对各种粉尘进行了惰化实验。结果表明,可以确定两个腔室中某些材料的MIC。计算的绝热火焰温度(CAFT)以及为燃烧传播选择的极限火焰温度已用于确定烃类气体的可燃范围。当前的工作基于其他研究人员的先前工作,讨论了使用这种方法确定固体燃料/氧化剂/惰性气体混合物的可燃性。他们的模型已经过修改,可以在20升室和1立方米室中确定的惰性水平之间进行比较。结果表明,可以使用20-L和1-m3模型来预测1-m3腔室的实验惰性水平,但有一定的局限性。最终,已证明这种改进的CAFT和极限火焰温度模型作为惰化水平和最小惰化浓度确定的预测/筛选工具的实用性在低燃料粉尘浓度下表现良好。

著录项

  • 作者

    Dastidar, Ashok Ghose.;

  • 作者单位

    Dalhousie University (Canada).;

  • 授予单位 Dalhousie University (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号