首页> 外文学位 >Multi-layer designs and composite Gaussian process models with engineering applications.
【24h】

Multi-layer designs and composite Gaussian process models with engineering applications.

机译:具有工程应用的多层设计和复合高斯过程模型。

获取原文
获取原文并翻译 | 示例

摘要

The modern era witnesses the prosperity of computer experiments, which play a critical role in many fields of technological development where the traditional physical experiments are infeasible or unaffordable to conduct. By developing sophisticated computer simulators, people are able to evaluate, optimize and test complex engineering systems even before building expensive prototypes. Since the computer experiments are usually time-consuming to run, surrogate models are often fitted to approximate these computationally expensive simulations. Because the fitted surrogate models are much faster to run, they can be readily used to provide instant predictions and facilitate the analysis of the underlying system.;In building the surrogate model for computer experiments, there are two important research topics. The first one is how to efficiently select a set of input values to run the computer simulation for a finite number of times, and this is called the design of computer experiments. After we obtain the simulation outputs, the second question is how to model these data in order to accurately approximate the unknown response surface generated by the simulator.;This thesis consists of three chapters, covering topics in both the design and modeling aspects of computer experiments as well as their engineering applications. The first chapter systematically develops a new class of space-filling designs for computer experiments, and the second chapter proposes a novel modeling approach for approximating computationally expensive functions that are not second-order stationary. The third chapter is devoted to a two-stage sequential strategy which integrates analytical models with finite element simulations for a micromachining process.;In computer experiments, space-filling designs such as Latin hypercube designs (LHDs) are widely used. However, finding an optimal LHD with good space-filling properties is computationally cumbersome. On the other hand, the well-established factorial designs in physical experiments are unsuitable for computer experiments owing to the redundancy of design points when projected onto a subset of factor space. In the first chapter, we present a new class of space-filling designs developed by splitting two-level factorial designs into multiple layers. The method takes advantages of many available results in factorial design theory and therefore, the proposed Multi- layer designs (MLDs) are easy to generate. Moreover, our numerical study shows that MLDs can have better space-filling properties than optimal LHDs.;In the second chapter, a new type of non-stationary Gaussian process model is developed for approximating computationally expensive functions. The new model is a composite of two Gaussian processes, where the first one captures the smooth global trend and the second one models local details. The new predictor also incorporates a flexible variance model, which makes it more capable of approximating surfaces with varying volatility. Compared to the commonly used stationary Gaussian process model, the new predictor is numerically more stable and can more accurately approximate complex surfaces when the experimental design is sparse. In addition, the new model can also improve the prediction intervals by quantifying the change of local variability associated with the response. Advantages of the new predictor are demonstrated using several examples.;Chapter three considers the problem of integrating analytical models with finite element simulations. We show that computationally cheap analytical models can be used to perform a sensitivity analysis which can reveal critical information about the underlying system prior to conducting the computationally intensive simulation study. We propose a two-stage sequential strategy, which can efficiently absorb the prior information from the sensitivity analysis and assign a customized number of levels for each input variable in the finite element simulations. The method is also broadly applicable for integrating other types of models having different levels of accuracy and speed. A case study for developing force metamodels in micromachining is presented to illustrate the effectiveness of the proposed method.
机译:现代时代见证了计算机实验的繁荣,计算机繁荣在传统物理实验无法进行或负担不起的技术发展的许多领域中发挥着至关重要的作用。通过开发复杂的计算机模拟器,人们甚至可以在构建昂贵的原型之前评估,优化和测试复杂的工程系统。由于计算机实验通常很耗时,因此通常需要安装替代模型来近似这些计算量大的模拟。由于拟合的替代模型运行起来要快得多,因此可以轻松地用于提供即时预测并促进对基础系统的分析。在构建用于计算机实验的替代模型时,有两个重要的研究主题。第一个是如何有效地选择一组输入值来运行计算机模拟有限次,这称为计算机实验设计。在获得仿真输出之后,第二个问题是如何对这些数据进行建模,以便准确地逼近模拟器生成的未知响应面。本文分为三章,涵盖了计算机实验的设计和建模方面的主题。以及它们的工程应用。第一章系统地开发了用于计算机实验的一类新的空间填充设计,第二章提出了一种新颖的建模方法,用于逼近非二阶平稳的计算昂贵的函数。第三章专门介绍了一种两阶段顺序策略,该策略将分析模型与有限元模拟集成在一起以进行微加工。在计算机实验中,诸如拉丁超立方体设计(LHD)等空间填充设计得到了广泛使用。然而,找到具有良好的空间填充特性的最优LHD在计算上很麻烦。另一方面,由于当投影到因子空间的子集上时设计点的冗余性,物理实验中公认的因子设计不适合计算机实验。在第一章中,我们介绍了通过将两级析因设计分成多层来开发的一类新的空间填充设计。该方法利用了析因设计理论中许多可用的结果,因此,所提出的多层设计(MLD)易于生成。此外,我们的数值研究表明,MLD比最佳的LHD具有更好的空间填充特性。在第二章中,开发了一种新型的非平稳高斯过程模型来近似计算上昂贵的函数。新模型是两个高斯过程的组合,其中第一个过程捕获了平滑的全球趋势,第二个过程则模拟了局部细节。新的预测器还合并了灵活的方差模型,这使它更能够近似具有变化的波动性的曲面。与常用的平稳高斯过程模型相比,新的预测器在数值上更稳定,并且在实验设计稀疏时可以更精确地近似复杂曲面。此外,新模型还可以通过量化与响应关联的局部可变性的变化来改善预测间隔。新的预测变量的优点通过几个示例得以证明。第三章考虑了将分析模型与有限元模拟相集成的问题。我们表明,计算上便宜的分析模型可用于执行敏感性分析,从而可以在进行计算密集型仿真研究之前揭示有关底层系统的关键信息。我们提出了一种两阶段顺序策略,该策略可以有效地吸收灵敏度分析中的先验信息,并为有限元模拟中的每个输入变量分配自定义级别的数量。该方法还广泛适用于集成具有不同水平的准确性和速度的其他类型的模型。案例研究了在微加工中发展力元模型,以说明该方法的有效性。

著录项

  • 作者

    Ba, Shan.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Applied Mathematics.;Statistics.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号