首页> 外文学位 >Expanding the Applications of Ion Mobility Spectrometry and Mass Spectrometry in Integrative 'Omics Analyses.
【24h】

Expanding the Applications of Ion Mobility Spectrometry and Mass Spectrometry in Integrative 'Omics Analyses.

机译:扩大离子迁移谱和质谱在综合性组学分析中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Over the past few decades, biomolecular analyses ranging from the study of complex mixtures to protein structural interrogation have increased significantly. These studies range from small molecule separations[1, 2] to observing structural trends in large proteins and protein sub-complexes.[3, 4] Traditionally, the use of liquid chromatography mass spectrometry (LC-MS), electrophoresis and nuclear magnetic resonance (NMR) spectroscopy have been at the forefront of these respective studies. Because complex mixtures can contain a variety of components over a wide dynamic range and proteins and their complexes can contain a diverse array of structures, few analytical techniques are capable of providing information across all experimental areas (e.g. small molecule mixtures to large individual proteins). In contrast, the use of Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) has emerged as a powerful tool for measuring ion(s) structural heterogeneity. While IMS-MS is a relatively newer method, workflows are becoming more common as the commercialization of IMS instruments has created a larger user base. Such workflows now include metabolomic,[1, 5, 6] lipidomic,[7] proteomics and protein structural analyses[8, 9]. Taken collectively, these areas encompass the field of 'omics' analysis. While each field has its respective difficulties, IMS-MS is well poised to enhance and even expand the repertoire of analytical platforms for omics analyses.;Much of the current bottlenecks in traditional techniques suffer from an inability to sample measureable species rapidly in a reproducible manner over a wide dynamic range. For example, Anderson and coworkers have proposed that the plasma proteome includes 106--107 species that span a concentration range of 1011.[10] In many cases, IMS has shown improved resolution of isomeric species compared to either LC or Gas Chromatography (GC) analyses.[11, 12] The utility of IMS-MS in profiling is largely attributed to its rapid ability to resolve low-abundance species from spectral regions containing high-abundance species, thereby increasing measurement sensitivity, dynamic range and peak capacity.[13--17] Additionally, IMS is capable of separating isobaric species that cannot be resolved by MS alone. In 'omic profiling directed toward biomarker discovery, it is imperative to identify compounds of interest. The identification is complicated by compound diversity (class and structural variation).;Traditionally, as well as all commercially available, IMS-MS instruments use Time-of-Flight (ToF) mass analyzers for determining an ion's mass-to-charge ratio (m/z). The obvious advantage is the ability to nest the m/z measurement (micros) within the drift measurement (ms). This creates an orthogonal separation where many m/z measurements are made during the drift separation. Although this combination creates a rapid, multidimensional analysis, ToF mass analyzers are not capable of multistage tandem mass spectrometry (MSn) or nonergodic dissociation methods such as electron transfer dissociation (ETD). These MS fragmentation methods are often used as standalone techniques in applications ranging from small molecule identification within complex mixtures to identifying high order structure in proteins using Hydrogen Deuterium exchange (HDX) MS. To this end, new applications of IMS-MS that leverage the use of ion trapping MS are useful for supplementing these limitations of ToF analyzers. Trapping mass analyzers add the capability to perform ion-neutral or ion-ion reactions on drift-selected ions. In such experiments, fragment ions are generated and are structurally useful in identifying and quantifying individual components or those that compose protein structures or post translational modifications (PTMs). To date, very few, if any, experiments have attempted to combine the unique capabilities of IMS-MS with MSn or ETD-MS for uncovering ion structural information or heterogeneity. As will be shown in the coming chapters, coupling IMS to trapping mass analyzers expands the capabilities into new areas of 'omics analysis and enhances the information that can be obtained from either technique alone.
机译:在过去的几十年中,从复杂混合物的研究到蛋白质结构询问的生物分子分析已大大增加。这些研究的范围从小分子分离[1,2]到观察大蛋白和蛋白亚复合物的结构趋势。[3,4]传统上,使用液相色谱质谱(LC-MS),电泳和核磁共振(NMR)光谱学一直是这些研究的最前沿。由于复杂的混合物可以在很宽的动态范围内包含多种成分,并且蛋白质及其复合物可以包含多种结构,因此很少有分析技术能够提供所有实验领域的信息(例如,小分子混合物到大型单个蛋白质)。相比之下,离子迁移谱质谱法(IMS-MS)的使用已成为一种用于测量离子结构异质性的强大工具。尽管IMS-MS是一种相对较新的方法,但是随着IMS仪器的商业化创建了更大的用户群,工作流变得越来越普遍。现在,此类工作流程包括代谢组学,[1、5、6]脂质组学,[7]蛋白质组学和蛋白质结构分析[8、9]。总体而言,这些领域涵盖了“组学”分析领域。尽管每个领域都有其各自的困难,但IMS-MS可以很好地增强甚至扩展用于组学分析的分析平台。;传统技术中的许多当前瓶颈都在于无法以可重现的方式快速采样可测物种动态范围广。例如,安德森(Anderson)和同事提出,血浆蛋白质组包括106--107种,浓度范围为1011。[10]在许多情况下,与LC或气相色谱(GC)分析相比,IMS已显示出更高的异构体分离度。[11,12] IMS-MS在分析中的实用性很大程度上归因于其快速解决低丰度物种的能力。从含有高丰度物质的光谱区域中分离出来,从而提高了测量灵敏度,动态范围和峰容量。[13--17]此外,IMS能够分离出仅由MS不能分离的同量异位物质。在针对生物标志物发现的组学分析中,必须确定目标化合物。化合物多样性(类别和结构变异)使鉴定变得复杂。传统上,以及所有市售的IMS-MS仪器都使用飞行时间(ToF)质量分析仪来确定离子的质荷比( m / z)。明显的优势是能够将m / z测量值(微米)嵌套在漂移测量值(ms)中。这将创建一个正交分离,其中在漂移分离期间会进行许多m / z测量。尽管此组合可创建快速的多维分析,但ToF质谱仪无法进行多级串联质谱(MSn)或非遍历解离方法,例如电子转移解离(ETD)。这些MS片段化方法通常用作独立技术,应用范围从复杂混合物中的小分子鉴定到使用氢氘交换(HDX)MS鉴定蛋白质中的高阶结构。为此,利用离子阱质谱技术的IMS-MS新应用可用于补充ToF分析仪的这些局限性。捕集质量分析仪增加了对漂移选择的离子进行离子中性或离子反应的能力。在此类实验中,会生成碎片离子,这些碎片离子可用于识别和定量单个成分或组成蛋白质结构或翻译后修饰(PTM)的那些成分。迄今为止,很少有实验试图将IMS-MS与MSn或ETD-MS的独特功能相结合来揭示离子结构信息或异质性。如将在接下来的章节中显示的那样,将IMS与阱质量分析仪结合使用可将功能扩展到组学分析的新领域,并增强仅通过这两种技术即可获得的信息。

著录项

  • 作者

    Donohoe, Gregory C.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号