首页> 外文学位 >Optimizacion estructural y topologica de estructuras morfologicamente no definidas mediante algoritmos geneticos.
【24h】

Optimizacion estructural y topologica de estructuras morfologicamente no definidas mediante algoritmos geneticos.

机译:使用遗传算法对形态未定义结构进行结构和拓扑优化。

获取原文
获取原文并翻译 | 示例

摘要

Structural optimization has been widely studied over the last forty years. Although Mathematical Programming has been the main tool during the first twenty years, it ran out of steam in front of a new group metaheuristic techniques based in Evolutionary Computation. Among them, Genetic Algorithms are meaningfully highlighted.;During the last years structural optimization has evolved from mere size optimization, to number of bars and joints placement (topology) optimization, and finally to simultaneous optimization.;The irruption of these new techniques in the field of structural optimization is owed, to a large extent, to mathematical programming lack of capacity to manage the simultaneous optimization owed to constraint and design variables high nonlinearities.;However, metaheuristic techniques are mathematically simpler and computationally easier because it is not required any extra information, aside from the objective function, to evaluate the solution fitness. Therefore, there are not required any linearization process neither function derivatives.;The main aim of present work is to go further a little in the simultaneous optimization of design variables, defining a new algorithm that does not need a predefined structure and covers the geometry parameters. Unlike current methods, the developed algorithm does not require any initial structure neither another type of additional information, apart from the load and support keypoints and support class definition.;The new algorithm lays assuming the following hypothesis: The previous definition of the form, geometry, rule or preconceived model implies a design constraint by themselves and so such algorithm, which is not subjected to that constraint must generate better designs, or at least as good as the previous ones.;A new algorithm was developed using this hypothesis, using a mixed code, adapted to each group of design variables, defining different operators who act independently on each group. The algorithm incorporates, in addition, some operators to ensure the solution's legality before being evaluated, as well as a group of strategies oriented to keep the solution diversity and to reduce the computational effort, the Achilles' heel of metaheuristics techniques.;Later, the algorithm was proven by a classical structural optimization problem: the ten-bar and six nodes cantilever structure, considering displacement and stress constraints. Using this structure as a benchmark, the different strategies implemented in the algorithm, for each operator over each group of design variables, were individually evaluated. As a result, the lower weight design reported, until now, was obtained, considering until sixty scientific papers where the structure was used as a benchmark.;Through the study of the evolutionary process developed during the benchmarking, and by comparison between the previously reported designs, it can be concluded that the previous reported algorithms were constrained by their own definition, conditioning so their results, so the initial hypothesis was proven. Moreover, the theorems of Fleron were proven, and also it was possible to generalize the optimum topology because it remained unchanged during all runs.;Between the main contributions of the present work, apart from the algorithm development, it can be stood: the new genetic operators, the penalty function, the possibility of acquire new information by the evolutionary process (owed to the algorithm definition) and finally obtaining a new minimum weight for the benchmark structure, a 10,92% lower than any other reported before.
机译:在过去的四十年中,对结构优化进行了广泛的研究。尽管在最初的20年中,数学编程一直是主要工具,但在基于进化计算的新的组元启发式技术面前,它却蒸蒸日上。其中,遗传算法得到了有意义的强调。在过去的几年中,结构优化已从单纯的尺寸优化发展到钢筋和接头放置(拓扑)数量的优化,最后发展到同时优化。结构优化领域在很大程度上归因于数学编程由于约束和设计变量的高度非线性而缺乏管理同时优化的能力;然而,元启发式技术在数学上更简单并且在计算上更容易,因为不需要任何额外的东西除了目标函数以外的其他信息,还可以评估解的适用性。因此,不需要任何线性化过程,也不需要函数导数。;当前工作的主要目的是在同时优化设计变量,定义不需要预定结构并覆盖几何参数的新算法方面走得更远。 。与当前方法不同,除了负载和支持要点以及支持类定义之外,开发的算法不需要任何初始结构,也不需要其他类型的附加信息。;新算法的假设是以下假设:形式,几何形状的先前定义,规则或先入为主的模型本身就暗含了设计约束,因此不受约束的这种算法必须产生更好的设计,或者至少与先前的设计一样好。混合代码,适用于每组设计变量,定义了对每组独立起作用的不同运算符。该算法另外还包含一些运算符,以确保在评估前解决方案合法性,以及旨在保持解决方案多样性并减少计算工作量的一组策略,这是元启发式技术的致命弱点。该算法由经典的结构优化问题证明:考虑位移和应力约束的十杆和六节点悬臂结构。使用该结构作为基准,针对每个设计变量组中的每个运算符,分别评估了算法中实现的不同策略。结果,直到60篇以结构为基准的科学论文都获得了迄今为止报告的重量更轻的设计;通过对基准测试过程中演变过程的研究以及之前报道的比较在设计中,可以得出结论,先前报道的算法受到其自身定义的限制,因此必须对其结果加以限制,因此可以证明最初的假设。此外,已经证明了Fleron定理,并且可以推广最佳拓扑,因为它在所有运行期间都保持不变。;在当前工作的主要贡献之间,除了算法的发展外,还可以证明:遗传算子,惩罚函数,通过进化过程获取新信息的可能性(归因于算法定义),并最终为基准结构获得新的最小权重,比以前报道的任何其他方法都低10.92%。

著录项

  • 作者

    Sanchez Caballero, Samuel.;

  • 作者单位

    Universidad Politecnica de Valencia (Spain).;

  • 授予单位 Universidad Politecnica de Valencia (Spain).;
  • 学科 Engineering Civil.;Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 399 p.
  • 总页数 399
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号