首页> 外文学位 >Asymmetric polymeric flow in a naturally-balanced runner system.
【24h】

Asymmetric polymeric flow in a naturally-balanced runner system.

机译:自然平衡的流道系统中的不对称聚合物流。

获取原文
获取原文并翻译 | 示例

摘要

Asymmetric flow in a naturally-balanced runner system was investigated using a selected group of polymeric materials and two runner designs. As in previous studies, the asymmetric filling of the cavities depended on the material, injection velocity, and runner design, reaching a stable value at high shear rates. In short shots, however, symmetric flow was observed after the first and second tee junctions, while asymmetric flow occurred after the 90° corners with some materials and in the cavities with others. Although flow fronts measured at the tee junctions and corners exhibited preferential flow along the outside walls of the runners, the flow fronts became symmetric well before the next junction in the runners.; Process anomalies, including runner and vent dimensions, mold surface roughness in the primary and secondary runners, mold temperature, and gravity (i.e., mounting position of the mold) had little effect on the asymmetric flow. Rheological phenomenon, including wall slip effects, melt elasticity, shear thinning, shear heating, melt viscosity, and corner effects had far more influence on the asymmetric filling of naturally-balanced runners. The asymmetric flow appeared to have two regimes. At high shear rates, the degree of asymmetric flow increased with melt viscosity and the temperature sensitivity of the melt viscosity. Overall the level of asymmetric flow correlated with the logarithm of the Deborah number, power law index, and activation energy for flow. The ability of a melt to slip along or adhesion to the mold walls also influenced asymmetric flows, with slip effects being more pronounced at higher shear rates.; These results suggest that flow asymmetry arises from the flow of the melt through the three turns in the runner system. The symmetric splitting of the two tee junctions, itself, does not seem to produce the asymmetric flow. As the materials exit the 90° corner, however, the slippage along the cavity walls may asymmetrically accelerate the melt while melt elasticity may force the polymer to the cavity walls. The balance of these forces and internal shearing of the polymer melt may determine whether asymmetric flow occurs in the corner or arises from expansion of the melt in the cavity.
机译:使用一组选定的聚合物材料和两种流道设计,研究了自然平衡流道系统中的不对称流动。与以前的研究一样,型腔的不对称填充取决于材料,注射速度和流道设计,在高剪切速率下达到稳定值。然而,在短时间内,在第一和第二个三通接头之后观察到对称流动,而在某些材料下在90°拐角处发生了不对称流动,而在其他空腔中则在空腔中发生了不对称流动。尽管在三通连接处和拐角处测量的流动前沿表现出沿流道外壁的优先流动,但在流道的下一个交汇点之前,流动前沿变得对称。工艺异常,包括流道和排气孔的尺寸,一次和二次流道中的模具表面粗糙度,模具温度和重力(即模具的安装位置)对不对称流动影响很小。流变现象,包括壁滑效应,熔体弹性,剪切稀化,剪切加热,熔体粘度和拐角效应,对自然平衡流道的不对称填充影响更大。不对称流动似乎具有两种状态。在高剪切速率下,不对称流动的程度随熔体粘度和熔体粘度的温度敏感性而增加。总的来说,不对称流动的水平与Deborah数,幂律指数和流动的活化能的对数相关。熔体沿模具壁滑动或粘附到模具壁上的能力也影响不对称流动,在较高的剪切速率下,滑移效应更加明显。这些结果表明,流道不对称性是由于流道系统中三圈液流的熔体流动引起的。两个三通接头本身的对称分裂似乎并未产生不对称流动。但是,当材料离开90°角时,沿型腔壁的滑移可能会不对称地加速熔体,而熔体弹性可能会迫使聚合物流向型腔壁。这些力与聚合物熔体的内部剪切之间的平衡可以确定在角部发生不对称流动还是由空腔中的熔体膨胀引起。

著录项

  • 作者单位

    University of Massachusetts Lowell.;

  • 授予单位 University of Massachusetts Lowell.;
  • 学科 Plastics Technology.
  • 学位 D.Eng.
  • 年度 2004
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 整形外科学(修复外科学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号