首页> 外文学位 >Epigenetic plasticity of cultured female human embryonic stem cells and regulation of gene expression and chromatin by PR-SET7 mediated H4K20me1.
【24h】

Epigenetic plasticity of cultured female human embryonic stem cells and regulation of gene expression and chromatin by PR-SET7 mediated H4K20me1.

机译:培养的女性人类胚胎干细胞的表观遗传可塑性以及PR-SET7介导的H4K20me1对基因表达和染色质的调节。

获取原文
获取原文并翻译 | 示例

摘要

Epigenetics is the study of changes in gene expression that occur in cells without alterations to DNA sequence. Epigenetic modifications are critical components of eukaryotic gene regulation and chromatin organization. Different epigenetic mechanisms, including the post-translational modifications of DNA-associated histone proteins play a role in the activation or repression of genes.;One of my research goals was to define the epigenetic signature of cultured human embryonic stem cells (hESCs) and to determine how their epigenomes change during lineage commitment. Pluripotent hESCs are capable of self-renewal and have the capacity to differentiate into any lineage of the embryo. However, hESCs grown in culture are heterogeneous in nature, consisting of a mixture of pluripotent to differentiated cells, making investigation of pluripotent hESCs difficult. Therefore precise definition of pluripotent cells present in culture is critical in order to use these cells for future stem cell based therapies. Using a FACS based approach, I demonstrated that I was able to selectively isolate sub-populations from the bulk culture that expressed high levels of pluripotency factors (P2) and those that lacked these factors (P5). For both populations, I performed high resolution ChIP-sequencing for 2 different histone modifications, indicative of transcriptionally active regions (H3K4me3) and repressed regions (H3K27me3) in order to define, compare and contrast their epigenomes. In the widely used female H9 hESC line, I found that the X-chromosome of the P5 population was enriched for H3K27me3 but was not in the P2 population. These findings strongly suggest that P2 represents the more naïve pluripotent stem cells, whereas, P5 has committed to differentiate, consistent with X-chromosome inactivation (Xi). In a separate female hESC line, HES3, I discovered that low passage cells (LP) are devoid of H3K27me3 on the X-chromosome but high passage cells (HP) are enriched for H3K27me3 on the X-chromosome. These findings indicated that extended passage length of hESCs in culture can have a dramatic effect on their epigenetic signature. My detailed analysis of these data sets revealed many novel findings. In LP P2 cells, I defined for the first time, the presence of a non-canonical H3K4me3 profile which is characterized by lowly enriched H3K4me3 domains many kilobases long, and spanning protein families such as zinc finger, keratin, olfactory and extra cellular matrix protein families. The function of these long domains in hESCs are unknown and previously undefined. I have also detected many stochastic quantitative differences in H3K4me3 and/or H3K27me3 between P2 and P5 that are not conserved between cell types, suggesting that embryonic stem cells are epigenetically plastic. However, more importantly, I have identified a core subset of genes, promoters and regulatory regions that contain quantitative epigenetic differences between P2 and P5 and correlate with gene expression changes. These conserved regions may play a critical role in early differentiation or maintenance of pluripotency. Overall, I have defined a unique epigenetic signature of purified pluripotent stem cells and identified conserved epigenetic changes that likely play an important role in the maintenance of pluripotent state or play a role in the commitment to differentiation (Chapter 1).;My second research goal was to investigate the role of the PR-SET7 H4K20 mono-methyltransferase (H4K20me1) in the transcriptional regulation of specific genes. Although PR-SET7-mediated H4K20me1 was previously shown to be involved in several DNA-templated processes including chromatin compaction, DNA damage response, DNA replication and cell cycle progression, the role of H420me1 in transcriptional regulation remains controversial. Initial studies showed that H4K20me1 functioned as a repressor but newer studies suggested a role in activation. Using conventional molecular biology techniques, I found that PR-SET7 and H4K20me1 predominantly functions as a transcriptional repressor of specific sets of genes. Consistent with this, my bioinformatics analysis indicated that H4K20me1 associated genes are largely devoid of acetylated histones; marks of transcriptionally active genes. In addition, I discovered that H4K20me1-associated genes are typically cell-type specific, but also, ∼500 highly transcribed metabolic genes are conserved for H4K20me1 across cell types. Also, I showed that genes enriched with PR-SET7 and H4K20me1 were physically distinct on gene bodies and are highly expressed in the genome compared to genes modified for either H4K20me1 or PR-SET7. My results demonstrated that PR-SET7-mediated H4K20me1 functions to repress certain genes in a cell-type specific manner, regardless of basal levels of expression. However, my study also suggested that H4K20me1 together with localization of PR-SET7 might have a distinct function associated with highly expressed genes, compared with genes modified with only H4K20me1 or PR-SET7, which are expressed at lower levels (Chapter 2).
机译:表观遗传学是对细胞中基因表达发生变化而不改变DNA序列的研究。表观遗传修饰是真核基因调控和染色质组织的关键组成部分。不同的表观遗传机制,包括与DNA相关的组蛋白的翻译后修饰,在基因的激活或抑制中起作用。我的研究目标之一是定义培养的人类胚胎干细胞(hESCs)的表观遗传学特征,并确定他们的表观基因组在血统承诺过程中如何变化。多能性hESC能够自我更新,并能够分化为胚胎的任何谱系。然而,在培养物中生长的hESC本质上是异质的,由多能性的分化细胞的混合物组成,这使得对多能性hESC的研究变得困难。因此,为了将这些细胞用于未来基于干细胞的疗法,精确定义培养物中存在的多能细胞至关重要。使用基于FACS的方法,我证明了我能够从表达高水平多能性因子(P2)和缺乏多能性因子(P5)的整体培养物中选择性分离亚群。对于这两个人群,我进行了2种不同组蛋白修饰的高分辨率ChIP测序,以指示转录活性区域(H3K4me3)和抑制区域(H3K27me3),以定义,比较和对比其表观基因组。在广泛使用的雌性H9 hESC品系中,我发现P5群体的X染色体富含H3K27me3,但P2群体却没有。这些发现强烈表明,P2代表更幼稚的多能干细胞,而P5致力于分化,与X染色体失活(Xi)一致。在单独的雌性hESC系HES3中,我发现X染色体上的低传代细胞(LP)不含H3K27me3,而X染色体上的H3K27me3则富含高传代细胞(HP)。这些发现表明,hESCs在培养物中的传代长度延长对其表观遗传特征可能具有显着影响。我对这些数据集的详细分析揭示了许多新颖的发现。在LP P2细胞中,我首次定义了一个非规范的H3K4me3谱,其特征是低富集的H3K4me3域长很多千碱基,并且跨越蛋白家族,如锌指,角蛋白,嗅觉和细胞外基质蛋白家庭。这些长域在hESC中的功能是未知的,以前是不确定的。我还检测到P2和P5之间H3K4me3和/或H3K27me3的许多随机数量差异在细胞类型之间并不保守,这表明胚胎干细胞是表观遗传可塑性的。但是,更重要的是,我已经确定了基因,启动子和调控区域的核心子集,这些子集包含P2和P5之间的定量表观遗传差异,并与基因表达变化相关。这些保守区可能在早期分化或维持多能性中起关键作用。总的来说,我已经定义了纯化的多能干细胞的独特表观遗传学特征,并鉴定了保守的表观遗传学变化,这些变化可能在维持多能性状态中起重要作用或在分化的承诺中起作用(第一章)。旨在研究PR-SET7 H4K20单甲基转移酶(H4K20me1)在特定基因的转录调控中的作用。尽管以前显示PR-SET7介导的H4K20me1参与了几种以DNA为模板的过程,包括染色质紧实,DNA损伤反应,DNA复制和细胞周期进程,但H420me1在转录调控中的作用仍存在争议。最初的研究表明H4K20me1发挥阻遏作用,但最新的研究表明其在激活中起作用。使用传统的分子生物学技术,我发现PR-SET7和H4K20me1主要充当特定基因集的转录阻遏物。与此相符,我的生物信息学分析表明,H4K20me1相关基因在很大程度上没有乙酰化组蛋白。转录活性基因的标记。此外,我发现与H4K20me1相关的基因通常是细胞类型特异性的,但是,在所有细胞类型中,H4K20me1均保留了约500个高度转录的代谢基因。此外,我发现,与针对H4K20me1或PR-SET7修饰的基因相比,富含PR-SET7和H4K20me1的基因在基因体上物理上不同,并且在基因组中高度表达。我的研究结果表明,PR-SET7介导的H4K20me1可以以细胞类型特异性的方式抑制某些基因,而与表达的基础水平无关。但是,我的研究还表明,H4K20me1与PR-SET7的定位可能具有与高表达基因相关的独特功能与仅用H4K20me1或PR-SET7修饰的基因相比,它们的表达水平较低(第2章)。

著录项

  • 作者

    Veerappan, Chendhore Sai.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Molecular.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号