首页> 外文学位 >A molecular modeling exploration of smectite interlayers as adsorption sites for inorganic and organic molecules.
【24h】

A molecular modeling exploration of smectite interlayers as adsorption sites for inorganic and organic molecules.

机译:蒙脱石中间层作为无机和有机分子吸附位点的分子模型研究。

获取原文
获取原文并翻译 | 示例

摘要

The abundance and reactivity of smectite minerals have prompted considerable scientific and engineering interest in these negatively charged, shrinking and swelling, layer type aluminosilicates. Molecular modeling techniques provide a uniquely molecular scale view of the complex interactions that occur within a smectite interlayer region between interlayer species and surrounding mineral surfaces. Atomistic simulations describing two hydrated smectite interlayers illustrate the effects of mineral structure and solution properties on adsorption mechanisms available to inorganic and organic species.; Detailed understanding of Cs-smectites is essential to accurate prediction of clay liner permeability to radiocesium cations at nuclear waste containment facilities. Monte Carlo (MC) and molecular dynamics (MD) calculations performed on three Cs-smectites suggested that Cs-saturated interlayers contained less than a monolayer of water molecules, organized into partial hydration shells around the cations. Cs+ formed strong inner sphere complexes with the mineral surface and displayed jump diffusional motion. Water molecules exhibited typical diffusional movements that accelerated with increased water content. Animation of the MD trajectories of interlayer species revealed the phenomenon of water sharing, when a single water molecule hydrates two cations simultaneously for hundreds of picoseconds. Differences in smectite mineral structure, including charge site distribution and hydroxyl group orientation, affected the prevalence of water sharing interactions, as well as the location and mobility of Cs+.; To manage the landscape to sequester carbon and reduce the severity of climate change, we must expand our knowledge of the organo-mineral interactions responsible for long-term recalcitrance of humic substances. A model humic molecule, subjected to energy minimization (EM) and MD calculations for different hydration and protonation states, mimicked experimental properties of humic substances, including bulk density, infrared spectrum, pseudomicellar reorientation with hydrated, and relative complexation of Na+ and Ca 2+. When placed within a hydrated Ca-montmorillonite interlayer, the deprotonated, Ca-saturated version of this model humic molecule adsorbed to the mineral surface via numerous cation bridges, a few water bridges, and indirect H-bonding interactions mediated by water molecules. The protonated version of this organic molecule formed direct hydrophobic and H-bonding interactions with the mineral. Both studies highlight the complex molecular scale surface chemistry associated with smectite surfaces.
机译:蒙脱石矿物的丰富性和反应性促使人们对这些带负电,收缩和溶胀的层状铝硅酸盐产生了相当大的科学和工程兴趣。分子建模技术提供了一种独特的分子尺度视图,可了解层间物种与周围矿物表面之间的蒙脱石层间区域内发生的复杂相互作用。描述两个水合蒙脱石中间层的原子模拟说明了矿物结构和溶液性质对无机和有机物可用吸附机理的影响。对Cs蒙脱石的详细了解对于准确预测核废料储存设施中粘土衬里对放射性铯阳离子的渗透性至关重要。对3个Cs蒙脱石进行的蒙特卡洛(MC)和分子动力学(MD)计算表明,Cs饱和的中间层包含的水分子少于单层,组织成围绕阳离子的部分水合壳。 Cs +与矿物表面形成了坚固的内部球络合物,并表现出跳跃扩散运动。水分子表现出典型的扩散运动,随着水含量的增加而加速。层间物种MD轨迹的动画显示了水共享的现象,当单个水分子同时将两个阳离子水合数百皮秒时。蒙脱石矿物结构的差异,包括电荷位点分布和羟基取向,影响了水共享相互作用的普遍性以及Cs +的位置和迁移性。为了管理景观以隔离碳并减少气候变化的严重性,我们必须扩大对造成腐殖质长期顽固的有机矿物质相互作用的认识。一个模型腐殖质分子,针对不同的水合和质子化状态进行了能量最小化(EM)和MD计算,模仿了腐殖质的实验特性,包括堆积密度,红外光谱,水合拟胶束的重新定向以及Na +和Ca 2+的相对络合。当放置在水合的Ca-蒙脱土夹层中时,该模型腐殖质分子的去质子化,Ca饱和形式会通过大量阳离子桥,一些水桥以及由水分子介导的间接H键相互作用吸附到矿物表面。该有机分子的质子化形式与矿物形成了直接的疏水和氢键相互作用。两项研究均强调了与蒙脱石表面相关的复杂分子尺度表面化学。

著录项

  • 作者

    Sutton, Rebecca Ann.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 383 p.
  • 总页数 383
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号