首页> 外文学位 >Nitrogen oxides removal and transformations in fungal bioreactors.
【24h】

Nitrogen oxides removal and transformations in fungal bioreactors.

机译:真菌生物反应器中氮氧化物的去除和转化。

获取原文
获取原文并翻译 | 示例

摘要

To reduce the detrimental impact of nitrogen oxide (NOx) emissions on ambient air quality and human health, NOx emissions from small sources must be treated in a cost-effective manner. Development of a fungal vapor phase bioreactor system for NOx removal may provide an effective alternative technology. To better understand the response of fungi to NO, a series of batch experiments were conducted to elucidate the effect of nitric oxide (NO), nitrite (NO 2-), nitrate (NO3-), and ammonium (NH4+) on fungal growth in the presence of NO. Batch results indicate that Exophiala lecanii-corni can utilize a certain level of NO as an external nitrogen source for growth under aerobic conditions even though high NO concentrations inhibit fungal metabolism. In addition, the fungus oxidizes nitrite species ([NO2 -]+[HNO2]) to nitrate under acidic conditions perhaps as a neutralizing response to protect itself from toxic nitrous acid species. NH4+ concentration was found to have a significant influence on fungal growth under acidic conditions; the inhibitory effect of NO was alleviated at low NH4+ levels, and enhanced at high NH4+ levels. Based on the batch study results, a fungal vapor-phase bioreactor system was developed for simultaneous removal of NOx and toluene. Average NH4+ levels in the bioreactors were maintained at less than 100 mug NH4+-N/g dry pellet using the periodic aerosol transfer method. Greater than 99% removal of a 45 g/m3/hr toluene loading rate was maintained at a 30 sec empty bed contact time. Simultaneously, a maximum elimination capacity of 31 g NOx/m3/hr was achieved at the same contact time, a 89% improvement over the highest NOx removal reported in previous studies. At a 14.9 g NOx/m3/hr loading rate, 69 to 85% NOx removal efficiencies were maintained over 200 hours of extended operation when the bioreactor was operated in a 12 hr on - 12 hr off mode. In addition, exposure to NOx increased the respiration rate of the fungi and lowered the pressure drop in the fungal bioreactors. This study has elucidated the response of fungi such as E. lecanii-corni to NO, and has laid the foundation for biological NOx treatment.
机译:为了减少氮氧化物(NOx)排放对周围空气质量和人体健康的有害影响,必须以具有成本效益的方式处理小来源的NOx排放。开发用于去除NOx的真菌气相生物反应器系统可能会提供有效的替代技术。为了更好地了解真菌对NO的响应,进行了一系列分批实验以阐明一氧化氮(NO),亚硝酸盐(NO 2-),硝酸盐(NO3-)和铵(NH4 +)对真菌生长的影响。 NO的存在分批结果表明,即使高浓度的NO抑制真菌的代谢,Exophiala lecanii-corni仍可以利用一定水平的NO作为有氧条件下生长的外部氮源。另外,真菌在酸性条件下将亚硝酸盐类物质[[NO2-]] [[HNO2]]氧化为硝酸盐,这可能是一种中和反应,可保护自己免受有毒亚硝酸盐类物质的侵害。发现在酸性条件下,NH4 +的浓度对真菌的生长有重要影响。在低NH4 +水平下,NO的抑制作用减弱,而在高NH4 +水平下,NO的抑制作用增强。基于批量研究结果,开发了一种真菌气相生物反应器系统,用于同时去除NOx和甲苯。使用周期性气溶胶转移方法,生物反应器中的平均NH4 +水平保持在小于100杯NH4 + -N / g干沉淀中。在30秒钟的空床接触时间下,保持45 g / m3 / hr的甲苯上样率大于99%的去除率。同时,在相同的接触时间达到了31 g NOx / m3 / hr的最大消除能力,比先前研究中报道的最高NOx去除率提高了89%。以14.9 g NOx / m3 / hr的加载速率,当生物反应器以12个小时开通-12个小时关断模式运行时,在200个小时的扩展运行中,可以保持69%至85%的NOx去除效率。另外,暴露于NOx增加了真菌的呼吸速率并降低了真菌生物反应器中的压降。这项研究阐明了真菌(如大肠杆菌)对NO的反应,并为生物NOx处理奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号