首页> 外文学位 >Experimental and numerical investigation of flame structures for stretched lean premixed planar/tubular flames and oxygen-enhanced planar/coflow flames.
【24h】

Experimental and numerical investigation of flame structures for stretched lean premixed planar/tubular flames and oxygen-enhanced planar/coflow flames.

机译:拉伸稀薄预混平面/管状火焰和氧气增强的平面/同流火焰的火焰结构的实验和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

In this work, advanced non-intrusive laser diagnostics techniques and numerical simulation are applied to investigate two different types of flame structures: counterflow and coflow flames.; A wide range of equivalence ratio flames, generated by premixed methane-air or propane-air impinging upon hot products with a counterflow burner, are studied to simulate inhomogeneous combustion processes occurring in combustion chambers such as in a direct-injection spark ignition engine. The effects of stretch, equivalence ratio and thermal-diffusion are studied separately. Hot products generated by the lean hydrogen-air flame can extend the lean flammability limit to a very low level and enhance the combustion process, which indicates the potential of ultra lean combustion. A diffusion controlled "negative flame speed flame" exists when the pre-mixed lean hydrocarbon-air mixture burns with the support of hot products from the lean hydrogen/air flame. Seven kinetic mechanisms (C1, C2, GRI-3.0, Williams, M5, Optimized, Mueller) are evaluated by data-model comparison. For this wide range of equivalence ratio flames, no universal mechanism applies and each mechanism has a specific range for a specific fuel.; Oxygen-enhanced flames have unique characteristics and potential economic benefits. Detailed flame structures measured by Raman scattering are compared to detailed simulations in an oxy/fuel coflow burner and an opposed jet burner. For planar opposed jet oxygen-enhanced flames, increasing oxygen concentration of reactants changes the flame temperature dramatically and produces more thermal NOx with nitrogen present. For diluted methane vs. air opposed jet flames, the calculated extinction limit of the minimum methane in the diluted fuel (19% CH4 in N 2) is much lower than the measured value (28% CH4 in N 2).; Three axisymmetric co-flow flames with different oxygen enhanced levels are studied. Flame A is formed from 65% CH4/35% N2 fuel stream co-flowed by air; flame B is formed from 65% CH4/35% N 2 fuel stream co-flowed by 100% O2 stream and flame C is formed from 20% CH4/80% N2 fuel stream co-flowed by 100% O2 stream. Pure oxygen as the oxidizer causes intensive chemical reaction and makes flame B (∼2400 K) and flame C (∼2900 K) much shorter, stronger, and brighter than flame A. Model-data comparisons for major species concentrations and temperature give very good agreement for flames A and B. The general trend is predicted for flame C.
机译:在这项工作中,先进的非侵入式激光诊断技术和数值模拟被用于研究两种不同类型的火焰结构:逆流火焰和同向火焰。研究了通过逆流燃烧器预混合甲烷空气或丙烷空气撞击热产品而产生的多种当量比火焰,以模拟在燃烧室(例如直接喷射式火花点火发动机)中发生的不均匀燃烧过程。分别研究了拉伸,当量比和热扩散的影响。贫氢-空气火焰产生的热产物可以将贫油的可燃性极限扩展到非常低的水平,并增强燃烧过程,这表明了超贫油燃烧的潜力。当预混合的贫碳氢化合物-空气混合物在贫氢/空气火焰的热产物的支持下燃烧时,存在扩散控制的“负火焰速度火焰”。通过数据模型比较评估了七个动力学机理(C1,C2,GRI-3.0,Williams,M5,Optimized,Mueller)。对于这么大的当量比火焰,没有通用的机构适用,每种机构对特定的燃料都有特定的范围。氧气增强火焰具有独特的特性和潜在的经济利益。将通过拉曼散射测量的详细火焰结构与氧气/燃料同流燃烧器和对置射流燃烧器中的详细模拟进行比较。对于平面对置喷射氧气增强火焰,增加反应物的氧气浓度会极大地改变火焰温度,并在存在氮的情况下产生更多的热NOx。对于稀释的甲烷与空气相反的喷射火焰,计算出的稀释燃料中最小甲烷的消光极限(N 2中为19%CH4)远低于测量值(N 2中为28%CH4)。研究了三种氧增强水平不同的轴对称同流火焰。火焰A由65%的CH4 / 35%的N2燃料流与空气共流形成。火焰B由与100%O2流共同流过的65%CH4 / 35%N 2燃料流形成,火焰C由与100%O2流共同流过的20%CH4 / 80%N2燃料流形成。纯氧作为氧化剂会引起强烈的化学反应,使火焰B(〜2400 K)和火焰C(〜2900 K)比火焰A更短,更坚固,更明亮。主要物质浓度和温度的模型数据比较非常好火焰A和B的一致性。预测火焰C的总体趋势。

著录项

  • 作者

    Cheng, Zhongxian.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号