首页> 外文学位 >Large-eddy simulation of axially-rotating, turbulent pipe and particle-laden swirling jet flows.
【24h】

Large-eddy simulation of axially-rotating, turbulent pipe and particle-laden swirling jet flows.

机译:轴向旋转的湍流管道和载有颗粒的旋流的大涡模拟。

获取原文
获取原文并翻译 | 示例

摘要

The flows of fully-developed turbulent rotating pipe and particle-laden swirling jet emitted from the pipe into open quiescent atmosphere are investigated numerically using Large-Eddy Simulation (LES). Simulations are performed at various rotation rates and Reynolds numbers, based on bulk velocity and pipe diameter, of 5.3x103, 12x103, and 24x103, respectively. Time-averaged LES results are compared with experimental and simulation data from previous studies. Pipe flow results confirm observations in previous studies, such as the deformation of the turbulent mean axial velocity profile towards the laminar Poiseuille-profile, with increased rotation. The Reynolds stress anisotropy tensor shows a redistribution due to pipe rotation. The axial component near the wall is suppressed, whereas the tangential component is amplified, as rotation is increased. The anisotropy invariant map also shows a movement away from the one-component limit in the viscous sublayer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S=0.5 is investigated. Swirl is observed to change the characteristics of the jet flow field, leading to an increase in jet spread and velocity decay and a corresponding decrease in the jet potential core. Lagrangian tracking with one way coupling is used to analyze particle dispersion in the jet flow. Three particle diameter sizes are investigated: 10, 100, and 500μm, which correspond to Stokes numbers of 0.06, 6, and 150, respectively. Particles are injected with an initial velocity set equal to the instantaneous fluid phase flow velocities at the jet inlet. The results show that, in the absence of swirl, particle dispersion is inversely proportional to particle size. With the addition of swirl, particle evolution is much more complicated. Largely unaffected by turbulent structures, the largest particles maintain their initial radial trajectory and disperse radially outward significantly more with the addition of swirl. The smaller particles, much more susceptible to turbulent structures, are shown to quickly diffuse within the jet, and their dispersion is unaffected by swirl. With the addition of swirl, dispersion of the midsize particles is shown to increase initially from the jet inlet up to a distance of approximately three diameter lengths downstream. Particle tracking and particle concentration analysis shows that the increase in particle dispersion of the midsize particles upstream is due to an initial outward migration of particles that are injected near the edge of the jet inlet.
机译:利用大涡模拟(LES),对充分发展的湍流旋转管和从管中喷出的颗粒状旋流射入开放的静态大气中的流动进行了数值研究。基于体速度和管道直径,分别在5.3x103、12x103和24x103的各种转速和雷诺数下进行了仿真。将时间平均的LES结果与先前研究的实验和仿真数据进行比较。管道流动结果证实了先前研究的观察结果,例如随着旋转的增加,湍流平均轴向速度分布向层状Poiseuille分布的变形。由于管道旋转,雷诺应力各向异性张量显示出重新分布。随着旋转的增加,壁附近的轴向分量被抑制,而切向分量被放大。各向异性不变图还显示,随着旋转的增加,粘性子层中的运动远离单组分极限。管道流动模拟的出口条件被用作射流模拟的入口条件。研究了没有涡流且涡流率为S = 0.5的射流。观察到旋流会改变射流流场的特性,从而导致射流扩散和速度衰减增加,并且射流势能核心相应减小。具有单向耦合的拉格朗日跟踪用于分析射流中的粒子分散。研究了三种粒径:10、100和500μm,它们分别对应于0.06、6和150的斯托克斯数。初始速度设定为等于射流入口处瞬时液相流速度的粒子被注入。结果表明,在没有旋涡的情况下,颗粒分散度与颗粒大小成反比。随着漩涡的增加,粒子的演化变得更加复杂。在很大程度上不受湍流结构的影响,最大的颗粒保持其初始径向轨迹,并随着旋涡的加入而明显更多地径向向外分散。较小的颗粒更容易受到湍流结构的影响,它们在喷嘴内迅速扩散,其分散不受旋流的影响。随着涡旋的增加,中型颗粒的分散度开始从射流入口开始增加,直至下游大约三个直径长度的距离。颗粒跟踪和颗粒浓度分析表明,上游中型颗粒的颗粒分散性增加是由于在喷嘴入口附近注入的颗粒开始向外迁移所致。

著录项

  • 作者

    Castro, Nicolas D.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号