首页> 外文学位 >Function and design of confinement reinforcement in pretensioned concrete I-girders.
【24h】

Function and design of confinement reinforcement in pretensioned concrete I-girders.

机译:预应力混凝土工字梁中约束加固的功能和设计。

获取原文
获取原文并翻译 | 示例

摘要

Confinement reinforcement is placed near the end of pretensioned concrete I-girders to enclose prestressing strands in the bottom flange. Experimental and analytical test programs were conducted to investigate the function of confinement reinforcement, and to provide the basis for a confinement reinforcement design model. Five 54-in. deep Florida I-Beam (FIB-54) girders were fabricated and load tested in the experimental program. Each end of each girder had a different combination of variables, which resulted in ten unique test specimens. Variables included: presence or absence of embedded steel bearing plates, quantity and configuration of confinement reinforcement, strand bond pattern, strand quantity, and quantity of horizontal and vertical end region reinforcement. Data were collected during and after prestress transfer to evaluate the effects of test variables on bottom flange cracking. Load tests were then conducted on each specimen (end) to determine the effects of test variables on girder behavior and capacity. Specimens were loaded in three-point bending at a shear span-to-depth ratio of 2.0. Failure modes in the test program included web-shear, bond-shear, and lateral-splitting. Data from fabrication and load testing were used to validate linear-elastic finite element models. Validated models were then used to investigate additional variables such as: Bearing pad geometry and stiffness, cross-section geometry, prestress release sequence, and strand transfer length. Building on the experimental and analytical results, serviceability and ultimate strength design models were created for the bottom flange of pretensioned I-girders. The serviceability model is specific to FIB cross-sections and can be used to evaluate transverse splitting stresses which cause bottom flange cracking. The ultimate strength model is general for any pretensioned I-girder cross-section and can be used to design bottom flange confinement reinforcement to mitigate lateral-splitting failure. Both the serviceability and ultimate strength models were found to be in good agreement with experimental data. Other primary outcomes of the research include an improved understanding of the function of confinement reinforcement during prestress transfer and at ultimate load, and an improved understanding the interaction between confinement reinforcement and the other test variables.
机译:在预应力混凝土工字梁的末端附近放置约束钢筋,以将预应力绞线包在底部法兰中。进行了实验和分析测试程序,以研究约束加固的功能,并为约束加固设计模型提供基础。 5个54英寸在实验程序中制造了深佛罗里达I型梁(FIB-54)大梁并进行了载荷测试。每个大梁的每个末端都有不同的变量组合,从而产生了十个独特的试样。变量包括:是否存在嵌入的钢质承压板,约束钢筋的数量和配置,钢绞线粘结模式,钢绞线数量以及水平和垂直端部钢筋的数量。在预应力传递期间和之后收集数据,以评估测试变量对底部法兰开裂的影响。然后在每个样本(末端)上进行载荷测试,以确定测试变量对梁性能和承载力的影响。样品以三点弯曲的方式加载,剪切跨度与深度之比为2.0。测试程序中的失败模式包括卷材剪切,粘结剪切和横向分裂。来自制造和负载测试的数据用于验证线弹性有限元模型。然后,使用经过验证的模型来研究其他变量,例如:轴承瓦块的几何形状和刚度,横截面几何形状,预应力释放顺序以及钢绞线传输长度。在实验和分析结果的基础上,为预应力工字梁的底部翼缘创建了可维护性和极限强度设计模型。可维修性模型特定于FIB横截面,可用于评估导致底部法兰开裂的横向劈裂应力。极限强度模型适用于任何预拉伸的工字梁横截面,可用于设计底部翼缘约束钢筋,以减轻横向劈裂破坏。维修性和极限强度模型均与实验数据吻合良好。该研究的其他主要结果包括:对预应力传递过程中和极限载荷下的约束加固功能有了更好的了解,并且对约束加固与其他测试变量之间的相互作用有了更好的了解。

著录项

  • 作者

    Ross, Brandon E.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号