首页> 外文学位 >N- and P-type Nano Bismuth(antimony)tellurium(selenium) Alloy Materials with Enhanced Thermoelectric Figure of Merit and Device Performance.
【24h】

N- and P-type Nano Bismuth(antimony)tellurium(selenium) Alloy Materials with Enhanced Thermoelectric Figure of Merit and Device Performance.

机译:具有增强的热电性能和器件性能的N型和P型纳米铋(锑)碲(硒)合金材料。

获取原文
获取原文并翻译 | 示例

摘要

To make thermoelectric device technology competitive in energy harvesting and power generation, it requires both high performance n- and p-type materials through nano-engineering. In contrast to p-type materials, the development of n-type Bi2Te3-based materials has been rather lackluster and consequently limits the device performance.;This work presents both n-type Bi2Te2.7Se 0.3 and p-type Bi0.4Sb1.6Te3 bulk nanocomposite materials with significantly enhanced figures of merit (ZT) through an optimized high-pressure consolidation process of mechanical alloyed powders that maintains a high concentration of nanoscale structures. With electron microscopy, our materials possess a wide distribution of grain sizes with 5 to 20 nm precipitates dispersed throughout. The nanoscale structuring leads to increased Seebeck coefficients and reduced lattice thermal conductivities while maintaining good electrical conductivities over a wide range of temperature.;The combination of these improvements results in a significantly enhanced ZT between 25 °C and 175 °C, with peak ZT of ∼2.5 at ∼100 °C for the best n-type and ∼3 at 50 to 100 °C for the best p-type. Both types of material have peak ZT at similar temperature range around 100 °C which is ideal for coupling them into the thermoelectric device.;Incorporation of these nano-materials into early heat-to-electricity conversion devices is shown to result in a efficiency of 7.9% compared to ∼5.6% in state-of-the-art commercially available devices using non-nano materials, representing about 41% improvement in device efficiency. Furthermore, the conversion efficiencies are 52% better than commercial devices at commonly available lower temperatures of energy harvesting around 50 °C. Thus this work demonstrates an important transition of materials to device technology for real world power generation and cooling applications by waste heat recovery and solar thermal energy.;An optimal hot pressing pressure to obtain the best Seebeck coefficient was found for Bi(Se)Te material, about 2 GPa. This phenomenon could be contributed by the pressure-driven changes in the density of antisite defects and electronic band structure at elevated temperatures. Microstructure analysis as a function of hot pressing pressure are presented and discussed.;From the discoveries of thermoelectric phenomena to their definitions by modern physics, conventional thermoelectric materials have been revived by nano engineering such as quantum confinement and energy filtering effect introduced by low-dimensional structure. Their roles are discussed via mathematically formulated thermoelectric properties to better understand their inter-relationships and the challenge and approach in the ZT enhancement.
机译:为了使热电设备技术在能量收集和发电方面具有竞争力,它需要通过纳米工程技术同时使用高性能的n型和p型材料。与p型材料相比,基于n型Bi2Te3的材料的发展一直乏善可陈,因此限制了器件性能。该工作同时提出了n型Bi2Te2.7Se 0.3和p型Bi0.4Sb1.6Te3通过优化的机械合金粉末高压固结工艺(具有较高的纳米级结构浓度),具有显着提高的品质因数(ZT)的块状纳米复合材料。通过电子显微镜,我们的材料具有广泛的晶粒尺寸分布,并有5至20 nm的沉淀物分散在各处。纳米级结构导致在较大温度范围内保持良好电导率的同时增加塞贝克系数并降低晶格热导率;这些改进的结合导致ZT在25°C至175°C之间显着增强,ZT峰值为最佳n型在〜100°C时约为2.5,最佳p型在50至100°C时约为3。两种材料在100°C左右的相似温度范围内均具有峰值ZT,非常适合将其耦合至热电设备中;将这些纳米材料并入早期的热电转换设备中显示出的效率为7.9%,而使用非纳米材料的最先进的商用设备约为5.6%,代表设备效率提高了约41%。此外,在通常可用的较低能量收集温度(约50°C)下,转换效率比商用设备高52%。因此,这项工作证明了通过废热回收和太阳能将材料向现实世界发电和制冷应用的设备技术的重要过渡。;找到了最佳的热压压力以获得最佳的塞贝克系数,Bi(Se)Te材料,大约2 GPa。在高温下,抗位缺陷密度和电子能带结构的压力驱动变化可能是造成这种现象的原因。提出并讨论了与热压压力有关的微观结构分析;从热电现象的发现到现代物理学对它们的定义,传统的热电材料已经通过纳米工程复兴了,例如量子限制和低维引入的能量过滤效应结构体。通过数学公式化的热电特性讨论了它们的作用,以更好地理解它们之间的相互关系以及ZT增强中的挑战和方法。

著录项

  • 作者

    Chan, Tsung-ta Ethan.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号