首页> 外文学位 >Optimization-based meshing techniques for mesh quality improvement and deformation.
【24h】

Optimization-based meshing techniques for mesh quality improvement and deformation.

机译:基于优化的网格划分技术,用于改善网格质量和变形。

获取原文
获取原文并翻译 | 示例

摘要

High quality meshes are important for the accuracy, stability, and efficiency of numerical techniques in computational simulations involving partial differential equations (PDEs), nonlocal peridynamics, mesh deformation, or shape matching. Several applications involving these mesh-based computational techniques include ocean dynamics (PDEs), surface cracks (nonlocal peridynamics), hydrocephalus (mesh deformation), and object recognition (shape matching).;The first part of the dissertation explores the best combinations of mesh quality metrics, preconditioners, and sparse linear solvers for solving various elliptic PDEs, multiobjective mesh optimization methods, and the effect of mesh anisotropy, mesh refinement, and kernel functions on the conditioning of nonlocal peridynamics models. Engineers use various mesh quality improvement methods for solving PDEs to improve the efficiency and accuracy as well as various types of preconditioners and sparse linear solvers for various PDE problems. However, little research has been performed with respect to choosing the most efficient combinations of these three factors for solving various elliptic PDE problems. First, we investigate the effect of choosing various combinations of mesh quality metrics, preconditioners, and sparse linear solvers on the numerical solution of elliptic PDEs. Many PDE-based engineering and scientific applications have multiple requirements for the finite element mesh discretizing the geometric domain; however, most traditional mesh optimization algorithms improve only one aspect of the mesh, Second, we propose a multiobjective mesh optimization framework for simultaneous mesh quality improvement and mesh untangling for PDE-based applications for optimizing two or more aspects of the mesh. Recently, a new paradigm called nonlocal peridynamics, which employs integral equations, was proposed to model discontinuous domains. Third, we investigate the effect of mesh anisotropy, mesh refinement, and kernel functions on the conditioning of the global stiffness matrix for a nonlocal peridynamic model.;The second part of the dissertation studies mesh deformation algorithms for robust anisotropic mesh deformation and for shape matching. First, we propose a robust mesh deformation algorithm using the anisotropy of the boundary deformation and multiobjective mesh optimization. When mesh deformation occurs, it is challenging to preserve element shape and noninverted mesh elements. In order to achieve this on the deformed domain, we use the direction of the boundary deformation to estimate the interior vertex positions and employ multiobjective mesh optimization for simultaneously preserving element shape and untangling the mesh.;Second, we propose an improved shape matching algorithm for deformable objects modeled by triangular meshes. We use dynamic programming to find the optimal mapping from the source image to the target image.
机译:在涉及偏微分方程(PDE),非局部周动力,网格变形或形状匹配的计算仿真中,高质量的网格对于数值技术的准确性,稳定性和效率至关重要。涉及这些基于网格的计算技术的一些应用包括海洋动力学(PDE),表面裂缝(非局部绕动力学),脑积水(网格变形)和对象识别(形状匹配)。论文的第一部分探讨了网格的最佳组合质量指标,预处理器和稀疏线性求解器,用于求解各种椭圆形PDE,多目标网格优化方法以及网格各向异性,网格细化和核函数对非局部周向动力学模型条件的影响。工程师使用各种网格质量改进方法来求解PDE,以提高效率和准确性,并使用各种类型的预处理器和稀疏线性求解器来解决各种PDE问题。但是,关于选择这三个因素的最有效组合来解决各种椭圆形PDE问题的研究很少。首先,我们研究选择各种网格质量度量,预处理器和稀疏线性求解器组合对椭圆PDE数值解的影响。许多基于PDE的工程和科学应用对离散化几何域的有限元网格有多种要求。然而,大多数传统的网格优化算法仅改善了网格的一个方面。其次,我们提出了一种多目标网格优化框架,用于同时提高网格质量和基于PDE的应用程序的网格解缠,从而优化了网格的两个或多个方面。最近,提出了一种新的范式,称为非局部周动力学,该范式采用积分方程,用于对不连续域进行建模。第三,我们研究了网格各向异性,网格细化和核函数对非局部绕动力学模型的整体刚度矩阵条件的影响。;论文的第二部分研究了用于稳健各向异性网格变形和形状匹配的网格变形算法。 。首先,我们提出了一种使用边界变形各向异性和多目标网格优化的鲁棒网格变形算法。当网格变形发生时,保持单元形状和非倒置网格单元具有挑战性。为了在变形域上实现这一目标,我们使用边界变形的方向来估计内部顶点的位置,并采用多目标网格优化来同时保留元素形状和使网格解开。用三角形网格建模的可变形对象。我们使用动态编程来找到从源图像到目标图像的最佳映射。

著录项

  • 作者

    Kim, Jibum.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号