首页> 外文学位 >Neuronal and Network Mechanisms of Ictogenesis
【24h】

Neuronal and Network Mechanisms of Ictogenesis

机译:信息生成的神经元和网络机制

获取原文
获取原文并翻译 | 示例

摘要

Epilepsy is a chronic disorder marked by recurrent, unpredictable seizures. Classic seizure prediction methods use signal processing algorithms on EEG signals to identify the pre-seizure period. However, this approach has produced disappointing results. Here, our goal is to elucidate the mechanisms that underlie ictogenesis, the process by which normal neural activity synchronizes during the pre-seizure period. We focus on neuronal and network-level mechanisms and how they interact to create ictogenic conditions.;At the neuronal level, we use computational modeling to suggest that intrinsic properties of individual neurons can determine a brain region's propensity for ictogenesis. We then compared the intrinsic properties of neurons in piriform cortex (PC), a region implicated in temporal lobe epilepsy, to neurons in somatosensory cortex (S1), a clinically stable region. Consistent with our model, we found that PC neurons are more excitable than those in S1.;At the network level, we use computational and experimental methods to explore how network parameters contribute to ictogenesis. In our simulations, we found a specific relationship between the network's propensity for ictogenesis and network parameters such as size and connectivity. In our experiments, we use fluorescent imaging of cortical slices from S1 and PC to compare activity during ictogenesis. Our results suggest that the spatially distributed circuitry of PC is reflected in the nonlocal pattern of activation, whereas S1 activity patterns reflect the recruitment of local circuitry in a smooth, sequential manner.;Finally, we examine the interaction of underlying mechanisms by analyzing an abstract model of neuronal population activity. Using dynamic systems analysis, we formalize the concept of network threshold, and show that it depends on a complex interaction of neuronal and network mechanisms, as well as the variability in the network. Our analysis suggests that network threshold is not a static parameter, but a dynamic and potentially modifiable characteristic of an active network.;Taken together, our data elucidates how both neuronal and network mechanisms contribute to ictogenesis, and how the process is further complicated by their interactions. By focusing on the mechanisms underlying ictogenesis, we hope to provide direction for clinical interventions that can stop an epileptic episode before it begins.
机译:癫痫病是一种慢性疾病,特征是反复发作,无法预测的癫痫发作。经典的癫痫发作预测方法在EEG信号上使用信号处理算法来识别癫痫发作前的时期。但是,这种方法产生了令人失望的结果。在这里,我们的目标是阐明促黄体生成的机制,此机制是癫痫发作前正常神经活动同步的过程。我们专注于神经元和网络级机制以及它们如何相互作用以创建致黄素状态。在神经元级,我们使用计算模型来建议单个神经元的内在属性可以确定大脑区域的黄原化倾向。然后,我们将梨状皮层(PC)(与颞叶癫痫有关的区域)中的神经元与体感皮层(S1)(临床上稳定的区域)中的神经元进行了比较。与我们的模型一致,我们发现PC神经元比S1中的神经元更具兴奋性。在网络级别,我们使用计算和实验方法来探索网络参数如何促成信息。在我们的仿真中,我们发现网络的信息生成倾向与网络参数(例如大小和连通性)之间存在特定的关系。在我们的实验中,我们使用来自S1和PC的皮质切片的荧光成像来比较信息生成过程中的活性。我们的结果表明,PC的空间分布电路反映在激活的非局部模式中,而S1活动模式则以平滑,连续的方式反映了局部电路的募集。最后,我们通过分析抽象来检查底层机制的相互作用。神经元种群活动模型。使用动态系统分析,我们将网络阈值的概念形式化,并表明它取决于神经元和网络机制的复杂相互作用以及网络的可变性。我们的分析表明网络阈值不是静态参数,而是活动网络的动态特征并且可能是可修改的特征;总而言之,我们的数据阐明了神经元和网络机制如何促成信息发生,以及其过程如何使其进一步复杂化互动。通过着重于引起黄疸的机制,我们希望为可以在癫痫发作开始之前停止发作的临床干预提供指导。

著录项

  • 作者

    Duarte, Sally P.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Neurosciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号