首页> 外文学位 >Modeling the momentum and mass transfer within a micro-scale polymer electrolyte membrane fuel cell for flows within the slip flow regime.
【24h】

Modeling the momentum and mass transfer within a micro-scale polymer electrolyte membrane fuel cell for flows within the slip flow regime.

机译:为滑流状态下的流动对微型聚合物电解质膜燃料电池内的动量和质量传递进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Polymer Electrolyte Membrane (PEM) fuel cell systems are heterogeneous catalytic systems. Although there are many computational models that describe the behavior of PEM fuel cells, few simulate the catalyst surface concentration of reactant gases at the catalyst layer-membrane layer inteface. Most PEM fuel cell models make no distinction between the bulk concentration of reactants and the catalyst surface concentration of reactants. It is the surface concentration that is key when studying PEM fuel cell systems: the reactions occur at the surface of the catalyst.;In addition, few model the dynamics within the non-continuum flow region near the solid surfaces of the fuel cell. Microscale and nanoscale fuel cells are not completely described by continuum mechanics. At the microscale and nanoscale, more specialized tools, which account for the increased surface forces and micro length scales, are needed to understand the dynamics of these micro-devices. The model simulates the microscale dynamics of a PEM fuel cell within the slip flow regime. Special attention is given to simulating the behavior of each reactant and product near each solid surface. To correct for non-equilibrium behavior near the solid surfaces, slip boundary conditions are used to account for velocity slip.;This analysis models a PEM fuel cell to determine both the bulk reactant concentrations and the catalyst surface concentrations at the catalyst layer-membrane layer interface and demonstrates that size has an impact on overall fuel cell performance. The model also shows a reduction of the Ohmic losses that is balanced by an increase in the parasitic losses within the fuel cell. Finally, it is shown that the bulk concentration at the membrane-catalyst layer interface is not zero.
机译:聚合物电解质膜(PEM)燃料电池系统是非均相催化系统。尽管有许多计算模型描述了PEM燃料电池的性能,但很少能模拟催化剂层-膜层界面处反应气体的催化剂表面浓度。大多数PEM燃料电池模型在反应物的总浓度和反应物的催化剂表面浓度之间没有区别。在研究PEM燃料电池系统时,表面浓度是关键:反应发生在催化剂表面。此外,很少有模型模拟燃料电池固体表面附近的非连续流动区域内的动力学。连续体力学并未完全描述微米级和纳米级燃料电池。在微尺度和纳米尺度上,需要更专业的工具来解决这些微设备的动力学问题,这些工具需要增加表面力和微长度尺度​​。该模型模拟了滑流状态下PEM燃料电池的微观动力学。要特别注意模拟每个固体表面附近的每种反应物和产物的行为。为了校正固体表面附近的非平衡行为,使用滑移边界条件来计算速度滑移。此分析对PEM燃料电池建模,以确定在催化剂层-膜层的总反应物浓度和催化剂表面浓度界面并证明尺寸会影响整体燃料电池的性能。该模型还显示了欧姆损失的减少,该损失与燃料电池内寄生损失的增加取得了平衡。最后,表明在膜-催化剂层界面处的体积浓度不为零。

著录项

  • 作者

    Goudy, Sean Tamarun.;

  • 作者单位

    Western Michigan University.;

  • 授予单位 Western Michigan University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号