首页> 外文学位 >Numerical modeling of tin-based absorber devices for cost-effective solar photovoltaics.
【24h】

Numerical modeling of tin-based absorber devices for cost-effective solar photovoltaics.

机译:用于低成本太阳能光伏电池的锡基吸收器装置的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Due to the pressures of decreasing the electricity generation costs from solar photovoltaic (PV) modules, there is a need for novel light absorbing materials that can promise comparable conversion efficiencies at lower manufacturing costs than the incumbent technologies based on crystalline Si or thin films (CdTe or Cu-In-Ga-S). This research evaluates the tin-suite of absorber materials (based on tin monosulfide; SnS, and Cu-Zn-Sn-S; CZTS) as the next generation of PV cells that can yield the desired performance in the long term. Numerical models have been developed using Analysis of Microelectronic and Photonic Structures (AMPS-1D) to reveal efficiencies of cells under AM1.5 illumination based on three n-p heterojunctions: CdS|CdTe, CdS|SnS and ZnO|SnS, and identify avenues for further efficiency improvements in SnS PV. It has been predicted that PV devices based on the SnS (absorber)-ZnO ( oxide) configuration yield higher conversion efficiencies (eta=20.3%) compared to the inverted configuration oxide-absorber, with respect to the incidence of light. The difference has been attributed to variations in open-circuit voltages for the two situations, and suggests the adoption of the absorber-oxide design for further device development. The other approach to increasing open-circuit voltages in tin-based cells by using the wider band gap CZTS revealed upto 17.6% efficiency limits in FTO (F-doped SnO2)-oxide (ZnO)-sulfide(CdS)-absorber(CZTS) baseline cells, lower than the absorber-oxide configuration in SnSbased PV. Modeling of the CZTS cells under inverted configuration showed remarkably poor efficiencies (~3%) due to high hole affinities in the absorber that promoted surface recombination at the absorbermetal ohmic contact. This observation suggests the requirement of smaller hole affinities and indicates optimal absorber band gaps of 1.2-1.3 eV for high-efficiency PV conversion. The optimal value should be achieved by cationic substitution of the tin sublattice with copper and/or zinc atoms rather than substituting sulfur with selenium in CZTS. It is concluded that future research efforts in device development should utilize the absorber-oxide design wherein the absorbers have the optimal band gaps as stated. The role of simulation tools such as AMPS will be crucial in aiding critical decision making on tin-based materials as solar PV continues to become an affordable source of electricity.
机译:由于降低来自太阳能光伏(PV)模块的发电成本的压力,因此需要一种新型的光吸收材料,与基于晶体硅或薄膜(CdTe的现有技术)相比,它们能够以较低的制造成本保证相当的转换效率。或Cu-In-Ga-S)。这项研究评估了吸收剂材料(基于单硫化锡; SnS和Cu-Zn-Sn-S; CZTS)的锡套件,作为可以长期产生所需性能的下一代PV电池。已经使用微电子和光子结构分析(AMPS-1D)建立了数值模型,以揭示基于三种np异质结CdS | CdTe,CdS | SnS和ZnO | SnS的AM1.5光照下的电池效率,并确定了进一步的途径提高SnS PV的效率。已经预言,相对于光入射,基于SnS(吸收剂)-ZnO(氧化物)构造的PV装置与倒置构造的氧化物-吸收剂相比具有更高的转换效率(eta = 20.3%)。差异归因于两种情况下开路电压的变化,并建议采用吸收体氧化物设计来进一步开发器件。使用较宽的带隙CZTS增加锡基电池中开路电压的另一种方法显示FTO(F掺杂SnO2)-氧化物(ZnO)-硫化物(CdS)-吸收剂(CZTS)的效率极限高达17.6%基线电池,低于基于SnS的PV中的吸收剂-氧化物配置。由于吸收体中的高空穴亲和力促进了吸收体金属欧姆接触处的表面复合,因此在反向配置下对CZTS电池进行建模显示出效率极低(约3%)。该观察结果表明需要较小的空穴亲和力,并指出高效PV转换的最佳吸收带隙为1.2-1.3 eV。最佳值应通过用铜和/或锌原子阳离子取代亚晶格而不是在CZTS中用硒取代硫来实现。结论是,设备开发中的未来研究工作应利用吸收剂-氧化物设计,其中吸收剂具有所述的最佳带隙。随着太阳能光伏继续成为负担得起的电力来源,AMPS之类的仿真工具的作用对于协助锡基材料的关键决策至关重要。

著录项

  • 作者

    Chandrasekharan, Ramprasad.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Materials science.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号