首页> 外文学位 >Development of electrospun bone-mimetic matrices for bone regenerative applications.
【24h】

Development of electrospun bone-mimetic matrices for bone regenerative applications.

机译:用于骨再生应用的电纺仿骨基质的开发。

获取原文
获取原文并翻译 | 示例

摘要

Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater quantities of PDGF-BB, compared to PCL scaffolds, over an 8-week interval. The released PDGF-BB retained its bioactivity, stimulating MSC chemotaxis in two separate assays. Collectively, these re-sults suggest that electrospun matrices incorporating the bone matrix molecules collagen I and HA, with sacrificial fibers, provide a favorable scaffold for MSC survival and infil-tration as well as the ability to sequester PDGF-BB from solution, leading to sustained local delivery and MSC chemotaxis.
机译:尽管骨骼具有显着的再生能力,但某些损伤和手术仍存在无法适当治愈的缺陷,需要手术干预才能诱发和支持骨再生。我们的研究小组假设,模仿骨骼细胞外基质的天然组成和结构的可生物降解材料的开发具有为这些患者提供治疗益处的潜力。利用称为静电纺丝的方法,我们的实验室开发了一种由机械稳定聚合物聚己内酯(PCL)的复合纳米纤维,天然I型胶原分子胶原蛋白和羟基磷灰石纳米晶体组成的仿骨基质(BMM)。 (哈)。我们在本文中显示,与单独的电纺PCL相比,BMM支持间充质干细胞(MSC),骨髓和骨膜内的多能骨祖细胞的更大粘附,增殖和整联蛋白激活。这些细胞反应是骨骼再生过程中必不可少的早期步骤,突出了将细胞与天然骨骼分子一起呈现的好处。随后,对大鼠皮质胫骨缺损中新骨形成的评估表明,BMM具有很高的骨传导性。但是,这些研究还揭示了由于固有的小孔径,内源性细胞无法在电纺丝基质中迁移。为了解决这一局限性,这将不利地影响sc骨至骨的周转率并抑制血管生成,在基质中添加了牺牲纤维。制造后去除这些纤维导致具有较大孔的BMM,导致MSC和内源性骨细胞的浸润增加。最后,我们评估了基质通过持续递送血小板衍生生长因子-BB(PDGF-BB)刺激MSC募集的潜力,这是骨骼愈合的关键步骤。与PCL支架相比,发现BMM在8周的时间间隔内吸附并随后释放出更多的PDGF-BB。释放的PDGF-BB保留了其生物活性,在两个单独的测定中刺激了MSC趋化性。总体而言,这些结果表明,结合了骨基质分子胶原蛋白I和HA以及牺牲纤维的电纺基质为MSC的存活和浸润以及从溶液中隔离PDGF-BB的能力提供了有利的支架,从而持续局部递送和MSC趋化性。

著录项

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Biomedical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号