首页> 外文学位 >Flow and heat transfer in microfluidic devices with application to optothermal analyte preconcentration and manipulation.
【24h】

Flow and heat transfer in microfluidic devices with application to optothermal analyte preconcentration and manipulation.

机译:微流控设备中的流动和传热,应用于光热分析物的预浓缩和操作。

获取原文
获取原文并翻译 | 示例

摘要

This work describes a novel optothermal method for electrokinetic concentration and manipulation of charged analytes using light energy, for the first time. The method uses the optical field control provided by a digital projector to regulate the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been assessed by using the temperature-dependent fluorescent dye method. Temperature rises up to 20°C (maximum temperature achieved in this experiment was about SO°e) have been obtained with the rate of ∼ O.8°C/s. The effect of the source size and light intensity on the temperature profile is investigated and the ability of the system to generate a moving heat source is demonstrated. A theoretical investigation is also performed by modeling the system as a moving plane source on a half-space. Effects of heat source geometry, speed, and power on the maximum temperature are investigated and it has been shown that by choosing an appropriate length scale, maximum temperature in dimensionless form becomes a weak function of source geometry. For the flow field control in the proposed system, the fundamental problem of fluid flow through straight/variable cross-section microchannels with general cross-sectional shapes are investigated. Approximate models are developed and verifications are performed by careful independent experiments and numerical simulations. Further verification is also performed by comparing the results with those collected from the literature.;The concentration enrichment in the present approach is achieved by balancing the bulk flow (either electroosmotic, pressure driven, or both) in a microcapillary against the electrophoretic migrative flux of an analyte along a controlled temperature profile provided by the contactless heating method. Almost a SOO-fold increase in the local concentration of sample analytes within 15 minutes is demonstrated. Optically-controlled transport of the focused band was successfully demonstrated by moving the heater image with the velocity of about 167 mum/min. Transporting the concentrated band has been achieved by adjusting the heater image in an external computer. This ability of the system can be used for sequential concentration and separation of different analytes and transporting the focused bands to the point of analysis.;Keywords: microfluidics, lab on chip, preconcentration, manipulation, optothermal heating, transport phenomena, fluid flow, heat transfer.
机译:这项工作首次描述了一种新的光热方法,用于利用光能进行电动浓缩和带电分析物的操作。该方法使用数字投影仪提供的光场控制来调节微流体中的局部流体温度。已经通过使用依赖温度的荧光染料方法评估了加热系统的热特性。温度升高到20°C(在本实验中达到的最高温度约为SO°e),速率为〜0.8°C / s。研究了光源大小和光强度对温度分布的影响,并演示了系统产生移动热源的能力。通过将系统建模为半空间上的移动平面源,还可以进行理论研究。研究了热源几何形状,速度和功率对最高温度的影响,结果表明,通过选择合适的长度比例,无量纲形式的最高温度成为热源几何形状的弱函数。对于所提出的系统中的流场控制,研究了流体通过具有一般横截面形状的直/可变横截面微通道的基本问题。通过仔细的独立实验和数值模拟,开发了近似模型并进行了验证。通过将结果与从文献中收集的结果进行比较,还可以进行进一步的验证。本方法中的浓度富集是通过平衡微毛细管中的总流量(电渗透,压力驱动或两者兼有)与电泳迁移通量来实现的。被分析物沿着由非接触加热方法提供的受控温度曲线。在15分钟内,样品分析物的局部浓度几乎增加了SOO-fold。通过以约167 mum / min的速度移动加热器图像,成功演示了聚焦带的光控传输。通过在外部计算机中调整加热器图像,可以实现集中带的传输。该系统的功能可用于顺序浓缩和分离不同的分析物,并将聚焦的谱带传输到分析点。关键词:微流控,芯片实验室,预浓缩,操作,光热加热,传输现象,流体流动,热量传递。

著录项

  • 作者

    Akbari, Mohsen.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Mechanical engineering.;Engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号