首页> 外文学位 >Ionic electroactive polymer composite actuators.
【24h】

Ionic electroactive polymer composite actuators.

机译:离子电活性聚合物复合执行器。

获取原文
获取原文并翻译 | 示例

摘要

In the past decades, ionic electroactive polymers (i-EAPs) have become attractive transduction materials due to their relatively large electromechanical actuations that can be generated under low voltages (∼ a few volts) and many other advantages, such as flexibility and light weight. These i-EAP actuators hold promises for applications including artificial muscles, robots, micro-electromechanical systems (MEMS), nano-electromechanical systems (NEMS), and energy harvesting. On the other hand, one critical issue in utilizing i-EAPs for those applications is how to significantly improve the electromechanical performance, including the actuation speed, actuation strain level and efficiency. Particularly, extremely low efficiency is the major drawback of current i-EAP actuators.;This dissertation discusses the physics in ionic polymer composite actuators and develops solutions to improve the actuation strain, speed, and efficiency. One general approach through the entire dissertation is to electrically and electromechanically analyze ionic polymer composite actuators to identify the limiting factors, and design a strategy to guide material selection or device fabrication for better performance.;Two types of ionic polymer actuators will be discussed: (i) ionic polymer conductive network composite (IPCNC) actuators that consist of an ionic liquid (IL) containing polymer membrane and large surface area composite electrodes, referred to as the "IPCNC actuator"; and (ii) IL containing ionic polymer membranes with planar Au electrodes, referred to as the "ionic polymer membrane actuator". While the composite electrodes in the IPCNCs provide large specific capacitance for ion storage which enhances the bending actuation, the ionic polymer membrane actuators offer a simple structure for device modeling and material analysis.;IPCNC actuators are fabricated and discussed first. IPCNCs with disordered CNC nanomorphology (nanoscale morphology), mostly made with conducting nanoparticles, are discussed in Chapter 3, while IPCNCs with ordered CNC nanomorphology, in which vertically aligned carbon nanotubes (VA-CNTs) are implemented, are discussed in Chapter 4. In these chapters, electrical and electromechanical models are established to analyze the performance of IPCNC actuators.;Firstly, electronic equivalent circuits are developed to model the complex frequency-dependent impedance and explain the initial response (t<10s) of ionic polymer composite actuators. It is found that the low frequency responses of these actuators indicate Warburg diffusion (semi-finite diffusion). When there is no CNC or when CNC is very thin (tens of nm), a simple equivalent circuit, which only consists of Warburg impedance AW, bulk resistance R, and electric double layer capacitance Cdl can be used, where Cdl and AW dominate the fast and slow responses of the actuator, respectively. When the CNC is thick (several microm), the aforementioned equivalent circuit is no longer adequate; therefore, the de Levi transmission line is introduced to model the CNC layer, which shows that the device transport time constant increases with CNC thickness. Secondly, by combining the time domain electric and electromechanical responses, a two-carrier model is established to explain the long time actuation response (t>10s), and also provide quantitative information on transport behavior of the two mobile ions (i.e., cation and anion) in IPCNCs. By employing this model, the total excess ions stored and strains generated by the cations and anions, and their transport times in the nanocomposites can be determined, which all depend critically on the morphologies of the conductor network nanocomposites. The model further reveals that, for EMI-Tf or EMI-BF4, anions have a larger effective ion size than cations, and thus dominate the long time response (t>10s) of the ionic polymer actuators, while cations account for the initial response (t<10s) of the actuators. Finally, IPCNCs with high volume fraction VA-CNTs are fabricated to improve the electromechanical performance of IPCNC actuators. The results demonstrate that the VA-CNTs create non-isotropic elastic modulus in the composite electrodes which markedly enhance the actuation strain (8.2%) compared to that of IPCNCs with RuO2 nanoparticles (2.1%), and provide inter-VA-CNT ion channels that enable faster actuation (tau=0.82 s) than that of IPCNCs with RuO2 nanoparticles (tau=3 s).;At last, progress in addressing the electromechanical coupling between the ions and the electroactive polymers, is made by applying P(VDF-CTFE), crosslinked P(VDF-CTFE)/PMMA, and crosslinked P(VDF-TrFE-CFE) for ionic polymer membrane actuators. Compared to the conventional ionic polymers, such as Nafion and Aquivion ionomers that were popularly utilized in previous IPCNC actuator studies, these PVDF based polymers remarkably enhance the stress generation and significantly depress the charge consumption of the ionic polymer membrane actuators, both of which leads to higher energy conversion efficiency. (Abstract shortened by UMI.).
机译:在过去的几十年中,离子电活性聚合物(i-EAP)成为诱人的转导材料,因为它们在低压(约几伏)下可以产生较大的机电驱动力,并具有许多其他优点,例如柔韧性和轻巧性。这些i-EAP执行器具有广阔的应用前景,包括人造肌肉,机器人,微机电系统(MEMS),纳米机电系统(NEMS)和能量收集。另一方面,在那些应用中使用i-EAP的一个关键问题是如何显着改善机电性能,包括致动速度,致动应变水平和效率。特别地,极低的效率是当前i-EAP执行器的主要缺点。本文讨论了离子聚合物复合执行器的物理原理,并提出了解决方案来提高执行应变,速度和效率。整篇论文中的一种通用方法是对离子聚合物复合驱动器进行电气和机电分析,以识别限制因素,并设计一种策略来指导材料选择或器件制造以获得更好的性能。;将讨论两种类型的离子聚合物驱动器:( i)由包含聚合物膜的离子液体(IL)和大表面积复合电极组成的离子聚合物导电网络复合材料(IPCNC)驱动器,称为“ IPCNC驱动器”; (ii)具有平面Au电极的含IL的离子聚合物膜,称为“离子聚合物膜致动器”。 IPCNC中的复合电极为离子存储提供了大的比电容,从而增强了弯曲驱动,而离子聚合物膜驱动器则为设备建模和材料分析提供了一种简单的结构。在第3章中讨论了具有无序的CNC纳米形态(纳米级形态)的IPCNC(主要由导电纳米粒子制成),而在第4章中讨论了具有有序CNC纳米形态的IPCNC,其中实现了垂直排列的碳纳米管(VA-CNT)。在这些章节中,建立了电气和机电模型来分析IPCNC执行器的性能。首先,开发了电子等效电路来建模复杂的频率相关阻抗,并解释离子聚合物复合执行器的初始响应(t <10s)。已经发现,这些致动器的低频响应表明沃伯格扩散(半有限扩散)。当没有CNC或CNC非常薄(数十纳米)时,可以使用仅由Warburg阻抗AW,体电阻R和双电层电容Cdl组成的简单等效电路,其中Cdl和AW占主导地位。执行器的快速响应和慢速响应。如果CNC较厚(几微米),上述等效电路将不再适用;因此,引入了De Levi传输线来对CNC层进行建模,这表明器件传输时间常数随CNC厚度的增加而增加。其次,通过结合时域电响应和机电响应,建立了一个双载流子模型来解释长时间的驱动响应(t> 10s),并提供了有关两种移动离子(即阳离子和离子)的迁移行为的定量信息。阴离子)。通过使用此模型,可以确定存储的总过量离子以及由阳离子和阴离子产生的应变,以及它们在纳米复合材料中的传输时间,这些都主要取决于导体网络纳米复合材料的形态。该模型进一步揭示,对于EMI-Tf或EMI-BF4,阴离子的有效离子尺寸比阳离子大,因此支配了离子聚合物致动器的长时间响应(t> 10s),而阳离子占了初始响应(t <10s)个执行器。最后,制造具有高体积分数VA-CNT的IPCNC,以改善IPCNC执行器的机电性能。结果表明,与具有RuO2纳米颗粒的IPCNC相比,VA-CNT在复合电极中产生非各向同性的弹性模量(8.2%),从而显着提高了驱动应变(8.2%),并提供了VA-CNT间的离子通道与使用RuO2纳米粒子的IPCNC(tau = 3 s)相比,它能实现更快的驱动(tau = 0.82 s)。最后,通过应用P(VDF-V)在解决离子与电活性聚合物之间的机电耦合方面取得了进展。 CTFE),交联的P(VDF-CTFE)/ PMMA和交联的P(VDF-TrFE-CFE),用于离子聚合物膜驱动器。与常规离子聚合物相比,例如先前IPCNC促动器研究中普遍使用的Nafion和Aquivion离聚物,这些基于PVDF的聚合物显着增强了应力产生并显着降低了离子聚合物膜致动器的电荷消耗,这两者都导致了更高的能量转换效率。 (摘要由UMI缩短。)。

著录项

  • 作者

    Liu, Yang.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号