首页> 外文学位 >Development and application of a two-dimensional hydrodynamic model for assessment of modern and historical flow conditions of Upper Mississippi River Pool 8 near La Crosse, Wisconsin.
【24h】

Development and application of a two-dimensional hydrodynamic model for assessment of modern and historical flow conditions of Upper Mississippi River Pool 8 near La Crosse, Wisconsin.

机译:二维流体动力学模型的开发和应用,用于评估威斯康星州拉克罗斯附近的密西西比河上游8池现代历史流量状况。

获取原文
获取原文并翻译 | 示例

摘要

The Upper Mississippi River System (UMRS) is a diverse and dynamic ecosystem that includes the main stem river channel, side channels, backwater floodplains and lakes, islands, wetlands, grasslands, and floodplain forests. The hydrology of this rich ecosystem is one of the key drivers for physical, chemical and biological processes. However, the hydrology and hydraulics of the UMRS has been drastically altered from its natural state as a result of the construction of the locks and dams in the 1930s. Beginning with the Water Resources Development Act of 1986, biologists, ecologists, and engineers have been working to restore the river to a more natural state within the current constraints imposed by the lock and dam system. In an effort to restore rivers to a more natural state, the determination of a hydraulic reference condition is essential to understanding the "why and how" of historical river system function. Understanding the fundamental processes of historical conditions will help prioritize resources and better quantify possible outcomes for riverine restoration.;The main goal of this study was to construct a hydrodynamic reference condition for Pool 8 of the Upper Mississippi River System using hydrodynamic computational fluid dynamic (CFD) modeling. The CFD model will provide a better understanding of pre-impoundment flow conditions as compared to post-impoundment conditions today. The numerical model was constructed and developed primarily from a pre-impoundment 1890s topographic map with bathymetric cross-sections in the channels. The 1890s map and other sources from the U.S. Army Corps of Engineers provided historic elevation and hydraulic reference data for model calibration. The calibrated historic model was then compared with a current model of similar scale representing post-impoundment conditions, allowing for quantitative analysis of the differences between the two conditions.;Model results indicated large changes in average depth and average velocity between historic and current conditions in certain parts of the pool, while others remained relatively unchanged. For example, velocities decreased in main channel aquatic areas in the lower part of Pool 8 from an average of 0.6 m/s (2.0 ft/s) under historic conditions to 0.1 m/s (0.3 ft/s) under current conditions. In the same part of the pool, however, velocities in contiguous backwater areas remained relatively constant, with most remaining less than 0.25 m/s (0.82 ft/s). Additionally, in the lower part of the pool, discharge distribution between the floodplain areas and the main channel was historically much more dynamic, with flow concentrated in the main and secondary channels at discharges less than 2265 m3/s and in the floodplains at greater than 2265 m3/s. Under current conditions, discharge distribution is much less dynamic, with approximately 2/3 of the total discharge conveyed on the floodplain for all discharges modeled (283 m3/s to 2832 m3/s or 10,000 ft3/s to 100,000 ft 3/s).
机译:密西西比河上游系统(UMRS)是一个多样化且动态的生态系统,包括主要干河河道,侧河道,回水洪泛区和湖泊,岛屿,湿地,草原和洪泛区森林。这个丰富的生态系统的水文学是物理,化学和生物过程的主要驱动力之一。但是,由于1930年代建造的闸门和水坝,UMRS的水文和水力已经从其自然状态发生了巨大变化。从1986年的《水资源开发法案》开始,生物学家,生态学家和工程师一直在努力将河水恢复到更自然的状态,而这是在锁和大坝系统所施加的当前限制内。为了使河流恢复到更自然的状态,确定水力参考条件对于理解历史河流系统功能的“原因和方式”至关重要。理解历史条件的基本过程将有助于优先分配资源并更好地量化河流恢复的可能结果。这项研究的主要目标是使用流体动力计算流体动力学(CFD)为密西西比河上游系统8池构造流体动力参考条件。 )建模。与目前的滞留后条件相比,CFD模型将提供对滞留前流动条件的更好理解。数值模型的构建和开发主要是根据1890年代前的水道地形图,通道中有测深剖面。 1890年代的地图和美国陆军工程兵团的其他资料为模型校准提供了历史海拔和水力参考数据。然后将校准后的历史模型与代表蓄水后条件的类似规模的当前模型进行比较,从而可以对两种条件之间的差异进行定量分析;模型结果表明,历史条件和当前条件之间的平均深度和平均速度变化很大池中的某些部分,而其他部分则保持相对不变。例如,水池8下部主航道水域的速度从历史条件下的平均0.6 m / s(2.0 ft / s)降低到当前条件下的0.1 m / s(0.3 ft / s)。然而,在水池的同一部分中,连续回水区的速度保持相对恒定,大多数保持在0.25 m / s(0.82 ft / s)以下。此外,在水池的下部,洪泛区和主河道之间的流量分布历来更加活跃,流量主要集中在主河道和次要河道,流量小于2265 m3 / s,而洪泛区的流量大于2265 m3 / s。 2265立方米/秒在当前条件下,流量分布的动态性要差得多,对于所有建模的流量(283 m3 / s至2832 m3 / s或10,000 ft3 / s至100,000 ft 3 / s),洪泛区总流量的大约2/3 。

著录项

  • 作者

    Stafne, Brice E.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Geophysical.;Biology Ecology.;Hydrology.
  • 学位 M.S.
  • 年度 2012
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号