首页> 外文学位 >Role of extrinsic factors in utilizing the giant magnetocaloric effect on materials: Frequency and time dependence.
【24h】

Role of extrinsic factors in utilizing the giant magnetocaloric effect on materials: Frequency and time dependence.

机译:外在因素在利用对材料的巨大磁热效应中的作用:频率和时间依赖性。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic refrigeration (MR) is potentially a high efficiency, low cost, and greenhouse gas-free refrigeration technology, and with the looming phase out of HCFC and HFC fluorocarbons refrigerants is drawing more attention as an alternative to the existing vapor compression refrigeration. MR is based on the magnetocaloric effect (MCE), which occurs due to the coupling of a magnetic sublattice with an external magnetic field. With the magnetic spin system aligned by magnetic field, the magnetic entropy changes by Delta SM as a result of isothermal magnetization of a material. On the other hand, the sum of the lattice and electronic entropies of a solid must be changed by -DeltaSM as a result of adiabatically magnetizing the material, thus resulting in an increase of the lattice vibrations and the adiabatic temperature change, DeltaTad. Both the isothermal entropy change DeltaSM and adiabatic temperature change DeltaTad are important parameters in quantifying the MCE and performance of magnetocaloric materials (MCM). In general, DeltaSM and Delta Tad are obtained using magnetization and heat capacity data and the Maxwell equations. Although Maxwell equations can be used to calculate MCE for first order magnetic transition (FOMT) materials due to the fact that the transition is not truly discontinuous, there can be some errors depending on the numerical integration method used. Thus, direct measurements of DeltaTad are both useful and required to better understand the nature of the giant magnetocaloric effect (GMCE). Moreover, the direct measurements of DeltaTad allow investigation of dynamic performance of FOMT materials experiencing repeated magnetization/demagnetization cycles. This research utilized a special test facility to directly measure MCE of Gd5Si2Ge2, Gd5Si 2.7Ge1.3, MnFePAs, LaFeSiH , Ni55.2M18.6 Ga26.2, Dy, Tb, DyCo2, (Hf0.83 Ta 0.17)Fe1.98, GdAl2 and Nd2Fe17 , MCMs, both FOMT and second order magnetic transition (SOMT) materials, at different magnetizing speeds, and the resulting data will be compared to indirect MCE data. The study can help understand the difference between direct and indirect measurement of MCE, as well as time dependence of MCE for FOMT materials.
机译:磁制冷(MR)可能是一种高效,低成本和无温室气体的制冷技术,随着HCFC和HFC碳氟化合物的逐步淘汰,制冷剂作为现有蒸气压缩制冷的替代方案正在引起更多关注。 MR基于磁热效应(MCE),这是由于子亚晶格与外部磁场耦合而产生的。在磁场使磁自旋系统对准的情况下,由于材料的等温磁化,磁熵通过Delta SM改变。另一方面,由于绝热磁化了材料,必须通过-DeltaSM改变固体的晶格和电子熵的总和,从而导致晶格振动和绝热温度变化DeltaTad的增加。等温熵变DeltaSM和绝热温度变化DeltaTad都是定量MCE和磁热材料(MCM)性能的重要参数。通常,使用磁化和热容量数据以及麦克斯韦方程式获得DeltaSM和Delta Tad。尽管由于跃迁并不是真正不连续的事实,因此可以使用麦克斯韦方程来计算一阶磁跃迁(FOMT)材料的MCE,但根据所使用的数值积分方法,可能会有一些误差。因此,直接测量DeltaTad既有用,也需要更好地了解巨磁热效应(GMCE)的性质。此外,DeltaTad的直接测量允许研究经历重复磁化/退磁循环的FOMT材料的动态性能。这项研究利用特殊的测试设备直接测量了Gd5Si2Ge2,Gd5Si 2.7Ge1.3,MnFePAs,LaFeSiH,Ni55.2M18.6 Ga26.2,Dy,Tb,DyCo2,(Hf0.83 Ta 0.17)Fe1.98, GdAl2和Nd2Fe17两种MCM,既是FOMT材料又是二阶磁性跃迁(SOMT)材料,其磁化速度不同,并且将所得数据与间接MCE数据进行比较。该研究有助于理解MCE的直接和间接测量之间的差异,以及FOMT材料的MCE的时间依赖性。

著录项

  • 作者

    Madireddi, Sesha.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号