首页> 外文学位 >Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process.
【24h】

Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process.

机译:通过电纺工艺再生家蚕丝纳米纤维和纳米复合原纤维。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d 100nm). SWNT-silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk-SWNT interactions. A new visualization system was developed to characterize the transport properties of the nanofibrous assemblies. The morphological, chemical, structural and mechanical properties of the nanofibers were determined by field emission environmental scanning microscopy, Fourier transform infrared and Raman spectroscopy, wide angle x-ray diffraction and microtensile tester respectively.
机译:近年来,人们非常关注将天然材料用于新型纳米产品(例如组织工程支架)。蚕丝纤维是已知最强的天然纤维之一。蚕丝是一种基于蛋白质的天然生物聚合物,近年来因其独特的性能(强度,韧性)以及诸如智能纺织品,防护服和组织工程学等潜在应用而引起了新的兴趣。多年来,传统的直径为10--20毫米的三角形家蚕纤维一直保持不变。但是,在我们的研究中,我们研究了通过电纺丝工艺将直径减小至纳米级,改变纤维的三角形形状并以单壁碳纳米管(SWNT)形式添加纳米填料的科学意义和潜在应用。静电纺丝工艺保留了丝绸的自然构象(无规和β-折叠)。研究了通过后处理(退火和化学处理)改变电纺纳米纤维性能的可行性。桑蚕丝素蛋白溶液(甲酸)被成功地电纺成均匀的纳米纤维(小至12 nm)。响应表面方法学(RSM)首次应用于电纺的实验结果,以开发出可以重现可预测尺寸(d <100nm)的再生丝纳米纤维的加工窗口。首次制造出具有预期特性(机械,导热和导电)的SWNT丝多功能纳米复合纤维,这些特性可能具有科学应用(神经再生,刺激细胞-支架相互作用)。为了实现这些应用,需要解决以下领域:对纳米管在丝基质中的分散性的系统研究,确定表征纳米纤维性能和建立丝-SWNT相互作用性质的新方法的确定。开发了新的可视化系统以表征纳米纤维组件的传输特性。纳米纤维的形貌,化学,结构和力学性能分别通过场发射环境扫描显微镜,傅立叶变换红外和拉曼光谱,广角X射线衍射和微拉伸测试仪确定。

著录项

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号