首页> 外文学位 >Functions of organelle-specific nucleic acid binding protein families in chloroplast gene expression.
【24h】

Functions of organelle-specific nucleic acid binding protein families in chloroplast gene expression.

机译:细胞器特异性核酸结合蛋白家族在叶绿体基因表达中的功能。

获取原文
获取原文并翻译 | 示例

摘要

My dissertation research has centered on understanding how nuclear encoded proteins affect chloroplast gene expression in higher plants. I investigated the functions of three proteins that belong to families whose members function solely or primarily in mitochondrial and chloroplast gene expression; the Whirly family (ZmWHY1) and the pentatricopeptide repeat (PPR) family (ZmPPR5 and ZmPPR10). The Whirly family is a plant specific protein family whose members have been described as nuclear DNA-binding proteins involved in transcription and telomere maintenance. I have shown that ZmWHY1 is localized to the chloroplast where it binds nonspecifically to DNA and also binds specifically to the atpF group II intron RNA. Why1 mutants show reduced atpF intron splicing suggesting that WHY1 is directly involved in atpF RNA maturation. Why1 mutants also have aberrant 23S rRNA metabolism resulting in a lack of plastid ribosomes. The PPR protein family is found in all eukaryotes but is greatly expanded in land plants. Most PPR proteins are predicted to localize to the mitochondria or chloroplasts where they are involved in many RNA-related processes including splicing, cleavage, editing, stabilization and translational control. Our results with PPR5 and PPR10 suggest that most of these activities may result directly from the unusually long RNA binding surface predicted for PPR proteins, which we have shown imparts two biochemical properties: site-specific protection of RNA from other proteins and site-specific RNA unfolding activity. I narrowed down the binding site for PPR5 and PPR10 to ∼45 nt and 19 nt, respectively. I showed that PPR5 contributes to the splicing of its group II intron ligand by restructuring sequences that are important for splicing. I used in vitro assays with purified PPR10 to confirm that PPR10 can block exonucleolytic RNA decay from both the 5' and 3' directions, as predicted by prior in vivo data. I also present evidence that PPR10 promotes translation by restructuring its RNA ligand to allow access to the ribosome. These findings illustrate how the unusually long RNA interaction surface predicted for PPR proteins can have diverse effects on RNA metabolism.;This dissertation includes both previously published and unpublished co-authored material.
机译:我的论文研究集中在理解核编码蛋白如何影响高等植物中叶绿体基因表达。我研究了属于家族的三种蛋白质的功能,这些家族的成员仅或主要在线粒体和叶绿体基因表达中起作用。 Whirly家族(ZmWHY1)和五肽重复序列(PPR)家族(ZmPPR5和ZmPPR10)。 Whirly家族是植物特异的蛋白质家族,其成员被描述为参与转录和端粒维持的核DNA结合蛋白。我已经证明ZmWHY1定位于叶绿体,在此处它与DNA非特异性结合,并且也与atpF II类内含子RNA特异性结合。 Why1突变体显示atpF内含子剪接减少,表明WHY1直接参与atpF RNA成熟。 Why1突变体还具有异常的23S rRNA代谢,导致缺乏质体核糖体。 PPR蛋白家族存在于所有真核生物中,但在陆地植物中得到了极大的扩展。预计大多数PPR蛋白会定位于线粒体或叶绿体,并参与许多与RNA相关的过程,包括剪接,切割,编辑,稳定化和翻译控制。我们对PPR5和PPR10的研究结果表明,大多数这些活性可能直接由PPR蛋白预测的异常长的RNA结合表面直接导致,我们已经证明具有两个生化特性:RNA对其他蛋白的位点特异性保护和对位蛋白的特异性展开活动。我将PPR5和PPR10的结合位点分别缩小到〜45 nt和19 nt。我发现PPR5通过重组对于剪接很重要的序列而有助于其II型内含子配体的剪接。我使用了纯化的PPR10进行的体外测定,以证实PPR10可以阻断5'和3'方向的核酸外切RNA降解,如先前体内数据所预测的那样。我也提供了证据,证明PPR10通过重组其RNA配体以允许进入核糖体来促进翻译。这些发现说明了PPR蛋白异常长的RNA相互作用表面如何对RNA代谢产生多种影响。本论文包括以前发表和未发表的合著材料。

著录项

  • 作者

    Prikryl, Jana.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Biology Botany.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号