首页> 外文学位 >Probing nano-scale atomic and electronic structures of iron-based superconductors.
【24h】

Probing nano-scale atomic and electronic structures of iron-based superconductors.

机译:探索铁基超导体的纳米级原子和电子结构。

获取原文
获取原文并翻译 | 示例

摘要

The discovery of iron-based high-Tc superconductors has attracted renewed interests in unconventional superconductivity after the intense research in the past two decades on cuprates. Similar to the cuprate superconductors, the iron-based superconductors exhibit high T c that the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity has failed to predict. Furthermore, the iron-based high-T c superconductors demonstrate intrinsic properties that are distinct from the cuprates, including a different pairing symmetry, coexistence of superconducting and magnetic ordering, and emergence of superconductivity by isovalent doping. The iron-based high-Tc superconductors belong to the structure families of chalcogenides and pnictides. Crystal structures and bonding have large effects on superconductivity in these materials. Investigating atomic and electronic structures is thus essential to help understand their interesting properties.;In this thesis, I have investigated the bulk and thin-film form of iron-based superconductors by using a combination of scanning transmission electron microscopy and electron energy loss spectroscopy. The major results are summarized below.;In the isovalent doped systems, Fe1+yTe1-xSe x and BaFe2(PxAs1-x)2, we discovered nanometer-scale phase separation associated with chemical inhomogeneity. Direct evidence of phase separation was obtained from the Z-dependent image contrast recorded in a scanning transmission electron microscope (STEM) using a high angle annular dark field (HAADF) detector. By investigating energy loss near edge structure (ELNES) of the Fe-L2,3 edge recorded in electron energy loss spectroscopy (EELS) spectra, especially the L3/L 2 white-line intensity ratio, we show the d-state occupancy of the Fe changes with composition. The results here provide structural evidences which help to explain the coexistence of superconducting and magnetic ordering in these materials, as well as demonstrate a direct effect on the electronic structure by isovalent doping.;Oxygen annealing effect is studied next in single crystals of Fe 1.08Te0.55Se0.45. The as-grown sample with the tetragonal PbO-type structure is non-superconducting owing to the excess Fe beyond the stoichiometric content of 1. Superconductivity is induced after oxygen annealing with an onset and zero resistance transition temperature around 14.5 K and 11.5 K, respectively. The oxygen doping is evidenced by electron energy loss spectroscopy and accompanied by improved homogeneity in the remaining PbO-type phase, as well as an increase in the L3/L 2 intensity ratio of the Fe-L2,3 edge, indicating an increase in Fe valence. Local phase transformation from the tetragonal PbO-type phase to the hexagonal NiAs-type phase is also observed after oxygen annealing.;Epitaxial Fe1+yTe thin-films with sharp 1-2 interfacial layers grown by molecular beam epitaxy (MBE) on LaAlO3 become superconducting when exposed to oxygen after growth at elevated sample temperatures. The interfacial strain caused by lattice mismatch is not detected in the thin-film. Oxygen, occupying interstitial sites, is detected next to the Fe layers by electron energy loss spectroscopy (EELS). Density functional Theory (DFT) calculations suggest preferential occupancy of oxygen located above the center of the Fe square lattice, at the opposite side of Te. The oxygen induced superconductivity depends critically on film quality; excess of Fe during MBE growth leads to amorphous-like interfacial film, a decrease in (001) lattice spacing and loss of superconductivity. Our results show that the balance between hole doping of diffused oxygen and electron doping of excess Fe is essential for the emergence of superconductivity in Fe1+yTe films.
机译:在过去二十年中对铜酸盐进行了深入研究之后,铁基高Tc超导体的发现引起了人们对非常规超导电性的新兴趣。与铜酸盐超导体相似,铁基超导体的Tc很高,这是Bardeen-Cooper-Schrieffer(BCS)的超导理论无法预测的。此外,铁基高T c超导体表现出与铜酸盐不同的固有特性,包括不同的配对对称性,超导和磁有序并存,以及通过等价掺杂出现的超导性。铁基高Tc超导体属于硫族化物和肽化物的结构族。晶体结构和键合对这些材料的超导性有很大影响。因此,研究原子和电子结构对于帮助理解它们的有趣特性至关重要。本论文中,我通过结合使用扫描透射电子显微镜和电子能量损失谱研究了铁基超导体的体和薄膜形式。主要结果总结如下:在等价掺杂体系Fe1 + yTe1-xSe x和BaFe2(PxAs1-x)2中,我们发现了与化学不均匀性有关的纳米级相分离。通过使用高角度环形暗场(HAADF)检测器在扫描透射电子显微镜(STEM)中记录的Z依赖图像对比度获得了相分离的直接证据。通过研究记录在电子能量损失谱(EELS)光谱中的Fe-L2,3边缘的边缘结构(ELNES)附近的能量损失,特别是L3 / L 2白线强度比,我们显示出d态的占据铁随组成而变化。此处的结果提供了结构上的证据,有助于解释这些材料中超导和磁有序的共存,并通过等价掺杂证明了对电子结构的直接影响。接下来,研究了Fe 1.08Te0单晶中的氧退火效应。 .55Se0.45。由于过量的Fe超出化学计量含量1,所以具有四方PbO型结构的样品是非超导的。在氧退火之后,分别在14.5 K和11.5 K的起始和零电阻转变温度下诱导了超导性。 。氧掺杂通过电子能量损失谱证明,并伴随着剩余PbO型相中均匀性的改善,以及Fe-L2,3边的L3 / L 2强度比的增加,表明Fe的增加价。氧退火后也观察到了从四方PbO型相到六方相NiAs型相的局部相变;通过分子束外延(MBE)在LaAlO3上生长的具有1-2个尖锐的界面的外延Fe1 + yTe薄膜变成在升高的样品温度下生长后暴露于氧气时会超导。在薄膜中未检测到由晶格失配引起的界面应变。通过电子能量损失谱(EELS)在Fe层旁边检测到占据间隙位置的氧气。密度泛函理论(DFT)计算表明,在Te的相对侧,Fe方形晶格中心上方的氧气优先占据。氧诱导的超导性主要取决于薄膜质量。 MBE生长期间过量的Fe会导致非晶态界面膜,(001)晶格间距减小和超导性损失。我们的结果表明,扩散氧的空穴掺杂与过量Fe的电子掺杂之间的平衡对于Fe1 + yTe薄膜中超导性的出现至关重要。

著录项

  • 作者

    Hu, Hefei.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号