首页> 外文学位 >Chip-scale plasmonic resonant nanostructures: Manipulation of light from nano to micro scale.
【24h】

Chip-scale plasmonic resonant nanostructures: Manipulation of light from nano to micro scale.

机译:芯片级等离子共振纳米结构:操纵从纳米级到微米级的光。

获取原文
获取原文并翻译 | 示例

摘要

Nanophotonics is finding myriad applications in information technology, health care, lighting and sensing. Plasmonics, as one of the most rapidly growing fields in nanophotonics, has great potential to revolutionize many applications in nanophotonics, including bio-sensing, imaging, lighting, photolithography and magnetic recording. In this dissertation, we explore the electrodynamics of plasmonic fields on different structured metallic chips and demonstrate how to manipulate light from nano to micro scale on the structure plasmonic chips.;It is highly desired to excite and control propagation of surface plasmon polariton fields in a systematic fashion as it is possible with optical fields both in free space and dielectric waveguides. To accomplish this goal, we developed the design methodology compatible with the conventional Fourier optical devices, investigated on-chip plasmonic metamaterials with novel material response and functionalities, as well as constructed sophisticated chip-scale integration of different optical elements.;We begin by discussing the fundamentals of plasmonic fields and modal propagation properties. We next investigate a metallic metamaterial showing form-birefringence by engineering the inherent metal properties on nanoscale, and experimentally characterized their supported plasmonic index ellipsoids. We present novel experimental and analytic results of plasmonic nano metamaterials allowing excitation of plasmonic fields by transverse electric polarized incidence, complementing so far demonstrated transverse magnetic polarized excitation. We further construct a plasmonic photonic crystal to manipulate the propagating plasmonic field on a micro scale. On a lager sub-millimeter scale, we experimentally validated the feasibility of Fourier plasmonics, demonstrating possibilities of miniaturizing the conventional bulky optical devices on small plasmonic chips. We ultimately integrate various photonic components on different scales and provide an approach for efficiently using resonant plasmonic phenomena to achieve nanoscale optical field localization.
机译:纳米光子学正在信息技术,医疗保健,照明和传感领域中得到无数的应用。等离子体技术作为纳米光子学中发展最快的领域之一,具有巨大的潜力,可以彻底改变纳米光子学的许多应用,包括生物传感,成像,照明,光刻和磁记录。本文研究了不同结构金属芯片上的等离子体场的电动力学,并演示了如何在结构等离子体芯片上操纵从纳米到微米级的光。迫切需要激发和控制表面等离子体激元在一个表面上的传播。系统的方式,因为自由空间和介电波导中的光场都有可能。为了实现这一目标,我们开发了与常规傅立叶光学器件兼容的设计方法,研究了具有新颖材料响应和功能的片上等离子超材料,并构建了不同光学元件的复杂芯片级集成。等离子体场的基本原理和模态传播特性。接下来,我们通过在纳米尺度上工程化固有的金属特性来研究显示形式双折射的金属超材料,并通过实验表征其支持的等离激元指数椭球。我们提出了等离子体纳米超材料的新的实验和分析结果,允许通过横向电极化入射来激发等离子体场,补充了迄今为止证明的横向磁极化激发。我们进一步构建等离子光子晶体,以在微观尺度上控制传播的等离子场。在更大的亚毫米规模上,我们通过实验验证了Fourier等离子体技术的可行性,证明了在小型等离子芯片上将常规笨重的光学设备小型化的可能性。我们最终集成了不同规模的各种光子组件,并提供了一种有效利用共振等离子体现象实现纳米级光场定位的方法。

著录项

  • 作者

    Feng, Liang.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号