首页> 外文学位 >Modeling and Development of Compact Onboard Fuel Processors for PEM Fuel Cell Applications.
【24h】

Modeling and Development of Compact Onboard Fuel Processors for PEM Fuel Cell Applications.

机译:用于PEM燃料电池应用的紧凑型车载燃料处理器的建模和开发。

获取原文
获取原文并翻译 | 示例

摘要

Liquid hydrocarbons are high energy density fuels, and micro-reactor based fuel processors are viable alternatives to generate hydrogen for portable fuel cell applications. Micro-reactors have high mass and high heat transfer rates due to their small length scales. However, they suffer from thermal heat retention problems due to large surface area to volume ratios. This thesis attempts to explore methodologies to make micro-reactors thermally efficient. The approach is by use of a counterflow heat exchanger configuration for heat recuperation, and quantifying parameters by which operation of the system can be controlled and optimized.;In the first part, a simulation of the preferential oxidation (PrOx) catalytic reaction is setup in a cylindrical channel. The channel is contained within a counterflow heat exchanger to recuperate excess heat. Performance of the system is evaluated by using the concept of reactive length and thermal efficiency. The ratio of the channel used for 95% of net conversion of CO is defined as reactive length. Thermal efficiency is defined as the ratio of heat recuperated to the total heat available. The PrOx reaction model is verified by comparing simulation with experimental data.;A parametric study then is performed using parameters such as mass flow rates, inlet temperatures, thermal conductivity, PrOx selectivity, mass of catalyst and inlet concentrations. Significant parameters by which the system can be controlled effectively are identified. Parameters such as the inlet temperatures that directly affect the systems enthalpy are found to be the most effective. The remaining parameters have a smaller effect, but can be used to fine tune the operation of the system. The control mass flow rate can be used as an active control during operation.;In the second part, simulation is employed to understand the flow and thermal characteristics of two types of micro-reactors: silicon based and channel based micro-reactors. For silicon substrate micro-reactor, it is found that the flow mixes and redistributes itself due to high mass transfer limits. The temperature is uniform in the substrate due to high thermal conductivity of silicon. CFD simulation is able to predict these temperatures within the silicon micro-reactor to 5% accuracy. The silicon micro-reactor is compared against a packed-bed reactor and is found to operate comparable due to similar length and time scales. A 1-D reaction model is also able to predict the conversion trends in both the packed-bed and silicon micro-reactors. Collapsing a 2D temperature field to an average temperature underestimates the reaction rates and conversion since the Arrhenius kinetics are exponential with temperature.;The channel based micro-reactor design consists of three generations of fuel processors that are constructed and demonstrated by the University of Michigan fuel processor team. The first generation is a proof of concept for channel flow micro-reactors, while the second generation uses discrete reactors (ATR, WGS & PrOX) for each processor stage. The second generation processor performed to specifications but required external power to maintain operation. The third generation fuel processor combines these separate stages into a single physical package giving a thermally integrated fuel processor with internal heat recuperation. A continuous self-sustaining operation of the third generation fuel processor is demonstrated over extended periods of time. Thus showing that a thermally integrated iso-octane fuel processor can be built with self-sustaining capabilities. There are potential applications for such micro-reactor based fuel processors as portable electronics, military hardware, quick recharge devices and more.
机译:液态碳氢化合物是高能量密度的燃料,基于微反应器的燃料处理器是用于便携式燃料电池应用中产生氢的可行替代品。微反应器由于其小规模的规模而具有高质量和高传热速率。然而,由于表面积与体积之比大,它们遭受热保温问题。本文试图探索使微反应器具有热效率的方法。该方法是使用逆流换热器配置进行热量回收,并量化参数,通过该参数可以控制和优化系统的运行。在第一部分中,建立了优先氧化(PrOx)催化反应的模拟。圆柱形通道。该通道包含在逆流热交换器中,以回收多余的热量。通过使用反应长度和热效率的概念来评估系统的性能。将用于CO净转化率95%的通道比例定义为反应长度。热效率定义为回热与总可用热量之比。通过将模拟与实验数据进行比较来验证PrOx反应模型;然后使用诸如质量流量,入口温度,导热系数,PrOx选择性,催化剂质量和入口浓度等参数进行参数研究。确定可以有效控制系统的重要参数。直接影响系统焓的参数(例如入口温度)被认为是最有效的。其余参数的影响较小,但可用于微调系统的操作。控制质量流率可用作操作过程中的主动控制。在第二部分中,通过仿真来了解两种类型的微反应器(基于硅和基于通道的微反应器)的流量和热特性。对于硅衬底微反应器,发现由于高的传质极限,流混合并自身重新分布。由于硅的高导热率,基板中的温度均匀。 CFD仿真能够预测硅微反应器中的这些温度,精度达到5%。将该硅微反应器与填充床反应器进行了比较,发现由于长度和时间比例相近,其工作性能相当。一维反应模型还能够预测填充床和硅微反应器的转化趋势。由于Arrhenius动力学与温度成指数关系,将2D温度场折叠到平均温度会低估反应速率和转化率。基于通道的微反应器设计包括三代燃料处理器,由密歇根大学燃料实验室制造和演示处理器团队。第一代是通道流微反应器的概念验证,而第二代则在每个处理器级使用离散反应器(ATR,WGS和PrOX)。第二代处理器的性能符合规范,但需要外部电源才能维持运行。第三代燃料处理器将这些独立的阶段组合到单个物理包装中,从而提供具有内部热量回收功能的热集成燃料处理器。演示了第三代燃料处理器在长时间内的连续自我维持操作。因此显示出可以构建具有自我维持能力的热集成异辛烷燃料处理器。这种基于微反应器的燃料处理器具有潜在的应用,例如便携式电子设备,军事硬件,快速充电设备等。

著录项

  • 作者

    Dhingra, Amit.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Chemical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号