首页> 外文学位 >Fabrication of Super Invar Micro- and Nano- Structures by Electrodeposition for Low Thermal Expansion Applications.
【24h】

Fabrication of Super Invar Micro- and Nano- Structures by Electrodeposition for Low Thermal Expansion Applications.

机译:用于低热膨胀应用的电沉积法制备超殷钢微结构和纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

Electrodeposited alloys of Super Invar composition, 64 wt % Fe, 31 wt % Ni, and 5 wt % Co, are of both theoretical research and practical interest due to the anomalous codeposition behavior, the preferential deposition of less noble metal, and to the material's low coefficient of thermal expansion, CTE. A better understanding of anomalous codeposition allows for controlling the deposition rates of individual Fe, Ni, and Co metal during codeposition and hence the composition. In addition, electrodeposited Super Invar alloys are of practical interests due to their potential applications in industry, particularly in micro-electro-mechanical systems (MEMS) due to the material's near zero CTE at room temperature in bulk materials. In practice, however, it is difficult to predict the alloy composition and control the composition gradient along the direction of growth, due to the anomalous codeposition behavior. Super Invar has not been widely studied; most studies of the ternary FeNiCo have been focused on Co-rich alloys due to their magnetic property over the last twenty years. In addition, there is an absence of understanding the CTE in electrodeposited Super Invar structures and how it is influenced by the electrodeposition parameters.;The objective of this research is to study the electrodeposition of Super Invar alloy thin films and micro-posts, and nanowires. First, thin film deposition of FeNiCo alloys is investigated in order to determine the most appropriate applied current density into desired recessed features. Based on the conditions of thin films, different pulse plating parameters are applied and the deposit composition distribution along the length of the microstructures examined. Pulse plating is critical in achieving a uniform composition distribution in 100 &mgr;m deep features. Using a pulse scheme with a low, non-zero current step introduces more cracks into the deposit, characterized by SEM. The coefficient of thermal expansion (CTE) of the micro-post arrays is also determined and exhibits negative values in the axial direction, i.e., the micro-posts shrink with temperature. Structures with micron size cracks exhibit large, negative CTE values during the first heat cycle of the CTE test and then exhibited less dimensional change with a subsequent heat cycle. The effect of the additives: glycine, Cu, and 2-butyne-1,4-diol (BD), into the Super Invar electrolyte is examined for better appearance, corrosion resistance and for the fabrication of Super Invar nanowires. Addition of glycine is desirable to thin film deposition in order to fabricate a smooth surface, acting as a leveling agent, however, it was not helpful to micro-recessed pulsed electrodeposition because it did not eliminate cracking, that may be due to local pH rises and corrosion during the relaxation part of the pulse. Corrosion resistance is improved when Cu is added into Super Invar electrolyte, but Cu ions simultaneously reduce in the electrolyte during deposition. To increase the stability of this electrolyte, potassium tartrate and Triton X-100, were added in FeNiCoCu. With these additives, the ratio of Fe to Ni and Fe to Co is altered. Microposts deposited were very dendritic on account of the transport controlled Cu reaction. With the presence of BD, a known corrosion inhibitor, each Fe, Ni, and Co reaction rate during deposition is altered, depending on different rotation rates, and different BD concentrations. FeNiCo nanowires without and with BD were prepared and the corrosion that is observed during pulsing is decreased when BD was added.
机译:超级因瓦合金成分,重量百分比为Fe,重量百分比为Ni,重量百分比为Co的电沉积合金,其铁含量为64 wt%,镍含量为31 wt%,钴含量为5 wt%,具有异常的共沉积行为,优先沉积较少的贵金属以及材料的成分热膨胀系数低,CTE。对异常共沉积的更好理解允许在共沉积期间控制各个铁,镍和钴金属的沉积速率,从而控制其成分。另外,电沉积的超级因瓦合金由于其在工业中的潜在应用而引起了实际的兴趣,特别是由于散装材料在室温下材料的CTE接近于零,因此在微机电系统(MEMS)中尤为重要。然而,实际上,由于异常的共沉积行为,难以预测合金成分并控制沿生长方向的成分梯度。 Super Invar尚未得到广泛研究。由于最近二十年来,三元FeNiCo的磁性一直集中在富钴合金上。此外,还缺乏对电沉积Super Invar结构中的CTE及其对电沉积参数的影响的了解。;本研究的目的是研究Super Invar合金薄膜和微柱以及纳米线的电沉积。首先,研究FeNiCo合金的薄膜沉积,以确定最合适的施加电流密度到所需的凹陷特征中。根据薄膜的条件,应用不同的脉冲镀覆参数,并检查沿微结构长度方向的沉积物成分分布。脉冲电镀对于在100μm深的特征中实现均匀的成分分布至关重要。使用具有低,非零电流阶跃的脉冲方案,以SEM为特征,将更多的裂纹引入沉积物中。还确定了微柱阵列的热膨胀系数(CTE),并且其在轴向方向上呈现负值,即,微柱随温度收缩。具有微米尺寸裂纹的结构在CTE测试的第一个热循环中显示出较大的负CTE值,然后在随后的热循环中显示出较小的尺寸变化。检查了添加剂:甘氨酸,铜和2-丁炔-1,4-二醇(BD)进入Super Invar电解质的效果,以获得更好的外观,耐腐蚀性以及Super Invar纳米线的制造。为了制造光滑的表面并用作流平剂,在薄膜沉积中添加甘氨酸是理想的,但是,它对于微凹脉冲电沉积是没有帮助的,因为它不能消除开裂,这可能是由于局部pH升高引起的。在脉冲的松弛部分发生腐蚀。当在超级因瓦合金电解液中添加铜时,耐蚀性得到改善,但是在沉积过程中电解液中的铜离子会同时减少。为了增加这种电解质的稳定性,在FeNiCoCu中添加了酒石酸钾和Triton X-100。使用这些添加剂,改变了铁与镍的比例以及铁与钴的比例。由于运输控制的铜反应,沉积的微柱非常树突状。在存在BD的情况下,已知的腐蚀抑制剂会根据不同的旋转速度和不同的BD浓度改变沉积过程中的Fe,Ni和Co的反应速率。制备了不带和带BD的FeNiCo纳米线,添加BD可以降低脉冲过程中观察到的腐蚀。

著录项

  • 作者

    Kim, Hana.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号