首页> 外文学位 >Photocatalytic Activity of Heterostructured Powders: Nanostructured Titanium Dioxide Shell Surrounding Microcrystalline Cores.
【24h】

Photocatalytic Activity of Heterostructured Powders: Nanostructured Titanium Dioxide Shell Surrounding Microcrystalline Cores.

机译:异质结构粉末的光催化活性:围绕微晶核的纳米结构二氧化钛壳。

获取原文
获取原文并翻译 | 示例

摘要

The efficiency of photocatalytic water splitting with particulate catalysts is low because of the recombination of photogenerated charge carriers and the back reaction of intermediate chemical species. To efficiently separate the intermediate species and charge carriers, a heterostructured ceramic powder composed of a micron sized light absorbing ferroelectric core surrounded by a nanostructured coating has been synthesized. It is hypothesized that the internal fields from the core can enhance the photocatalytic activity of heterostructured powders both under UV and visible light. The present work compares the photocatalytic activity of heterostructured powders with that of their components and other related formulations. The heterostructured powders investigated include micron-sized (mc-) crystallites of ATiO3 (A=Ba, Sr, Pb, Fe) and AFeO3 (A=Bi, La, Y) coated with nanostructured (ns- ) TiO2.;Three parameters that affect the photocatalytic activity of heterostructured powders, namely annealing temperature, cocatalyst loading, and coating thickness, were optimized. The annealing temperature was shown to change the photocatalytic activity of the shell as well as the interface properties. Photocatalysts loaded with 1 wt % Pt showed the greatest photocatalytic hydrogen production rate. An increase of coating thickness, within a certain range, improved the photocatalytic activity of the heterostructured powders.;Ferroelectric PbTiO3, having a narrower band gap than BaTiO 3, was coated with ns-TiO2 and the heterostructure showed enhanced visible light photocatalytic activity for methylene blue degradation (when compared with the components). This confirms that micro-nano heterostructures are promosing for the design of efficient visible-light photocatalysts.;Visible light absorbing mc-FeTiO3 and mc-AFeO3 (A=Bi, La, Y) were also coated with ns-TiO2 for photocatalytic methylene blue degradation under visible light irradiation. Combined with the results from (Ba, Sr, Pb)TiO 3, it is observed that mc-ATiO3/ ns-TiO2 (A=Ba, Sr, Pb, Fe) heterostructures show greatly enhanced photocatalytic activities, when compared with their components, while mc-AFeO3/ns-TiO2 (A=Bi, La, Y) do not. It is speculated that the similarities of the electronic properties (band gap energy and band positions) of the core materials to the TiO 2 coating and the bonding between the core and shell also influence the photocatalytic activity of the micro-nano heterostructures.;The results show that mc-(Ba, Sr)TiO3/ ns-TiO2 heterostructures annealed at 600 °C are more efficient for photocatalytic hydrogen production than their components alone. That a sonomechanical mixture of BaTiO3 and commercial TiO 2 (Degussa P25) did not show enhanced photocatalytic hydrogen production, indicates that the interface between the core and the shell is important for enhanced photocatalytic activity. Comparison of the absorbance coefficient of each component implies that the micron sized core is the primary component that absorbs photons. This is also confirmed by the fact that a non-absorbing Al2O3 core coated with TiO2 showed a similar photocatalytic hydrogen production rate to TiO2 alone. It is argued that electrons from the core can transfer to the surface of the coating to participate in redox reactions. Micron sized BaTiO3 coated with nanostructrued TiO2 is more photocatalytically active than a nano sized BaTiO3/TiO2 heterostructure, which further indicates the advantage of the micro-nano core/shell heterostructure.
机译:由于光生电荷载体的重组和中间化学物质的逆反应,用颗粒状催化剂进行光催化水分解的效率很低。为了有效地分离中间物种和电荷载流子,已经合成了由微米尺寸的光吸收铁电芯和被纳米结构涂层包围的异质结构陶瓷粉末。假设来自核的内部场可以在紫外光和可见光下均增强异质结构粉末的光催化活性。本工作比较了异质结构粉末及其组分和其他相关配方的光催化活性。研究的异质结构粉末包括涂有纳米结构(ns-)TiO2的ATiO3(A = Ba,Sr,Pb,Fe)和AFeO3(A = Bi,La,Y)的微米级(mc-)微晶。优化了异质结构粉末的光催化活性,即优化了退火温度,助催化剂负载量和涂层厚度。退火温度显示出改变了壳的光催化活性以及界面性质。负载1重量%Pt的光催化剂显示出最大的光催化氢产生速率。在一定范围内增加涂层厚度,提高了异质结构粉末的光催化活性。纳米带隙比BaTiO 3窄的铁电PbTiO3涂有ns-TiO2,异质结构显示出对亚甲基可见光的增强光催化活性。蓝色降解(与组件相比)。这证实了微纳米异质结构正在促进高效可见光光催化剂的设计。;可见光吸收mc-FeTiO3和mc-AFeO3(A = Bi,La,Y)也涂有ns-TiO2以用于光催化亚甲基蓝在可见光照射下降解。结合(Ba,Sr,Pb)TiO 3的结果,观察到mc-ATiO3 / ns-TiO2(A = Ba,Sr,Pb,Fe)异质结构与它们的组分相比显示出大大增强的光催化活性,而mc-AFeO3 / ns-TiO2(A = Bi,La,Y)则没有。据推测,核材料与TiO 2涂层的电子性质(带隙能和能带位置)的相似性以及核与壳之间的键合也影响了微纳米异质结构的光催化活性。结果表明,在600°C退火的mc-(Ba,Sr)TiO3 / ns-TiO2异质结构比单独使用其组分更有效地光催化制氢。 BaTiO3和商用TiO 2(Degussa P25)的声机械混合物未显示出增强的光催化氢产生,表明核与壳之间的界面对于增强光催化活性很重要。每个成分的吸收系数的比较表明,微米大小的核心是吸收光子的主要成分。这也可以通过以下事实得到证实:涂有TiO2的非吸收性Al2O3核芯的光催化产氢速率与单独的TiO2相似。有人认为,来自核的电子可以转移到涂层表面以参与氧化还原反应。纳米结构的TiO2涂层的微米级BaTiO3比纳米级的BaTiO3 / TiO2异质结构更具光催化活性,这进一步表明了微纳米核/壳异质结构的优势。

著录项

  • 作者

    Li, Li.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering General.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号