首页> 外文学位 >Investigation of Low Temperature, Atomic-Layer-Deposited Oxides on 4Hydrigen-Silicon Carbide and their Effect on the Silicon Carbide/Silicon Dioxide Interface.
【24h】

Investigation of Low Temperature, Atomic-Layer-Deposited Oxides on 4Hydrigen-Silicon Carbide and their Effect on the Silicon Carbide/Silicon Dioxide Interface.

机译:研究4H-碳化硅-碳化硅上低温原子沉积的氧化物及其对碳化硅/二氧化硅界面的影响。

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide has long been considered an excellent substrate for high power, high temperature applications. Fabrication of conventional MOSFETs on silicon carbide (SiC) relies on thermal oxidation of the SiC for formation of the silicon dioxide (SiO2) gate oxide. Historically, direct oxidation was viewed favorably due to ease of fabrication. However, the resulting MOS devices have exhibited significant interface trap densities, Dit , which reduce effective inversion layer mobility by capturing free carriers and enhancing scattering. While nitridation has been shown to reduce Dit, the inversion layer electron mobility of these devices is still limited by the presence of carbon near the interface. Studies have suggested a low mobility transition region between the SiC and SiO2, on the SiC side, attributed to increased carbon concentration resulting from the thermal oxidation of the SiC. In this work, we have investigated the low temperature, atomic layer deposition (ALD) of SiO2 onto SiC compared to thermal oxidation of SiC for the fabrication of MOS devices. Avoiding the carbon out diffusion and subsequent carbon build-up resulting from thermal oxidation is expected to result in a superior, higher mobility MOSFET.;A three-step ALD process using 3-aminopropyltriethoxysiliane (3-APTES), ozone and water was evaluated on silicon and SiC substrates. Ellipsometry and XPS were used to characterize blanket films, and showed good results. Capacitors fabricated on SiC showed the need for optimized post deposition anneals. The effect of post oxidation anneals in nitrogen, forming gas and nitric oxide were examined. The standard nitric oxide (NO) anneal that is used to improve Dit after thermal oxidation was also shown to be the best anneal for the low temperature deposited ALD oxides.;Materials characterization of the nitrided ALD and nitrided thermal oxide samples was completed using STEM/EELS techniques in addition to the ellipsometry and XPS. STEM/EELS analysis of the samples revealed no significant difference in transition regions on either side of the SiC/SiO2 interface regardless of oxidation technique or anneal temperature or ambient. All samples analyzed exhibited approximately 2-3nm of transition region on either side of the interface with no evidence of carbon or silicon rich regions. XPS was also used to determine a valence band offset of 2.43eV for the ALD oxide on 4H-SiC.;Lateral MOSFETs were fabricated on 4H-SiC substrates with the following oxidation treatments: thermal oxidation at 1175°C, thermal oxidation at 1175°C followed by a nitric oxide (NO) anneal at 1175°C, and ALD of SiC at 150°C followed by an NO post oxidation anneal (POA) at 1175°C. ALD of the SiO2 was performed using 3-aminopropyltriethoxysiliane (3-APTES), ozone and water. Field effect mobility values were comparable for these samples, suggesting common thermal oxidation steps were still limiting the mobility. As such additional lateral MOSFETs were fabricated without the incoming sacrificial oxidation steps. This sacrificial-oxidation free experiment showed a 15% improvement in peak field effect mobility for the nitrided ALD oxide samples as compared to the nitrided thermal oxides. SIMS of the interfaces revealed nitrogen concentrations of ∼6E21 at/cc in the nitrided ALD sample compared to ∼4-6E20 in the nitrided thermal sample. This extremely high level of nitrogen incorporation, which is unparalleled in NO annealed thermal oxides, is accountable for the increase in field effect mobility. The low deposition temperature of the ALD oxide causes high levels of carbon incorporation and greater number of dangling bonds at the interface. Both the dangling bonds and excess carbon acts as binding sites for the nitrogen, increasing the nitrogen concentration and resulting in higher mobilities.;Results presented support the use of SiO2 deposited using low temperature atomic layer deposition for improved gate oxides on 4H-SiC MOSFETs given the opportunity for increased nitrogen incorporation. The elevated levels of nitrogen measured in the NO annealed ALD SiO2 sample are unique and are directly attributed to the low temperature ALD process. As such, high peak field effect mobilities can repeatably be achieved with optimization of the nitrided ALD process.
机译:长期以来,碳化硅一直被认为是用于高功率,高温应用的出色基材。传统的MOSFET在碳化硅(SiC)上的制造依赖于SiC的热氧化来形成二氧化硅(SiO2)栅极氧化物。从历史上看,直接氧化由于易于制造而受到好评。但是,所得的MOS器件显示出显着的界面陷阱密度Dit,通过捕获自由载流子并增强散射来降低有效的反型层迁移率。尽管已经证明氮化可以减少Dit,但是这些器件的反型层电子迁移率仍然受到界面附近碳的存在的限制。研究表明,在SiC一侧,SiC和SiO2之间的迁移率较低,这归因于SiC的热氧化导致碳浓度增加。在这项工作中,我们研究了将SiO2在SiC上的低温原子层沉积(ALD)与SiC的热氧化相比,以制造MOS器件。避免因热氧化而导致的碳向外扩散和随后的碳积聚,有望产生出一种更好的,更高迁移率的MOSFET。在以下条件下,评估了使用3-氨丙基三乙氧基硅铝(3-APTES),臭氧和水的三步ALD工艺。硅和SiC衬底。椭圆光度法和XPS用来表征毯膜,并显示出良好的结果。在SiC上制造的电容器表明需要优化的沉积后退火。考察了后氧化退火对氮气,生成气体和一氧化氮的影响。还显示了用于改善热氧化后的Dit的标准一氧化氮(NO)退火也是低温沉积ALD氧化物的最佳退火。;使用STEM /完成了氮化ALD和氮化热氧化物样品的材料表征除椭圆仪和XPS之外,还提供EELS技术。样品的STEM / EELS分析表明,无论氧化技术,退火温度或环境如何,SiC / SiO2界面两侧的过渡区域均无显着差异。分析的所有样品在界面的任一侧都显示出大约2-3nm的过渡区域,没有证据表明存在富碳或富硅区域。 XPS还用于确定4H-SiC上ALD氧化物的价带偏移为2.43eV .;在4H-SiC衬底上制造了横向MOSFET,并进行了以下氧化处理:1175°C的热氧化,1175°C的热氧化在1175°C下进行一氧化氮(NO)退火,在150°C下进行SiC的ALD,然后在1175°C下进行NO后氧化退火(POA)。 SiO 2的ALD使用3-氨丙基三乙氧基硅s烯(3-APTES),臭氧和水进行。这些样品的场效应迁移率值相当,这表明常见的热氧化步骤仍在限制迁移率。这样,无需输入牺牲氧化步骤即可制造额外的横向MOSFET。该无牺牲氧化的实验表明,与氮化的热氧化物相比,氮化的ALD氧化物样品的峰值场效应迁移率提高了15%。界面的SIMS显示,氮化的ALD样品中的氮浓度约为6E21 at / cc,而氮化的热样品中的氮浓度约为4-6E20。这种氮掺入量极高,这在NO退火的热氧化物中是无与伦比的,这可归因于场效应迁移率的提高。 ALD氧化物的低沉积温度导致高水平的碳结合以及界面处更多的悬挂键。悬空键和过量的碳都充当氮的结合位点,增加了氮的浓度并导致更高的迁移率。所提出的结果支持使用低温原子层沉积法沉积SiO2来改善4H-SiC MOSFET上的栅极氧化物增加氮结合的机会。在NO退火的ALD SiO2样品中测得的氮含量升高是独特的,直接归因于低温ALD工艺。这样,通过优化氮化的ALD工艺可以重复地获得高的峰值场效应迁移率。

著录项

  • 作者

    Haney, Sarah Kay.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号