首页> 外文学位 >A finite volume, Cartesian grid method for computational aeroacoustics.
【24h】

A finite volume, Cartesian grid method for computational aeroacoustics.

机译:用于计算航空声学的有限体积笛卡尔网格方法。

获取原文
获取原文并翻译 | 示例

摘要

Computational Aeroacoustics (CAA) combines the disciplines from both aeroacoustics and computational fluid dynamics and deals with the sound generation and propagation in association with the dynamics of the fluid flow, and its interaction with the geometry of the surrounding structures. To conduct such computations, it is essential that the numerical techniques for acoustic problems contain low dissipation and dispersion error for a wide range of length and time scales, can satisfy the nonlinear conservation laws, and are capable of dealing with geometric variations.; In this dissertation, we first investigate two promising numerical methods for treating convective transport: the dispersion-relation-preservation (DRP) scheme, proposed by Tam and Webb, and the space-time a-epsilon method, developed by Chang. Between them, it seems that for long waves, errors grow slower with the space-time a-epsilon scheme, while for short waves, often critical for acoustics computations, errors accumulate slower with the DRP scheme. Based on these findings, two optimized numerical schemes, the dispersion-relation-preserving (DRP) scheme and the optimized prefactored compact (OPC) scheme, originally developed using the finite difference approach, are recast into the finite volume form so that nonlinear physics can be better handled. Finally, the Cartesian grid, cut-cell method is combined with the high-order finite-volume schemes to offer additional capabilities of handling complex geometry. The resulting approach is assessed against several well identified test problems, demonstrating that it can offer accurate and effective treatment to some important and challenging aspects of acoustic problems.
机译:计算航空声学(CAA)结合了航空声学和计算流体动力学的学科,并与流体流动的动力学及其与周围结构的几何形状的相互作用相关联地处理声音的产生和传播。为了进行这样的计算,至关重要的是,用于声学问题的数值技术在很宽的长度和时间范围内具有低耗散和色散误差,能够满足非线性守恒定律,并且能够处理几何变化。在本文中,我们首先研究了两种有希望的对流输运数值方法:Tam和Webb提出的色散-关系-保留(DRP)方案和Chang提出的时空a-ε方法。在它们之间,似乎对于长波,时空aε方案的误差增长较慢,而对于通常对声学计算至关重要的短波,DRP方案的误差积累较慢。基于这些发现,最初使用有限差分方法开发的两个优化数值方案,即色散相关保留(DRP)方案和优化的预制紧凑(OPC)方案,被重铸为有限体积形式,以便非线性物理学可以更好地处理。最终,将笛卡尔网格切割单元方法与高阶有限体积方案相结合,以提供处理复杂几何图形的附加功能。针对几种公认的测试问题对最终方法进行了评估,表明该方法可以为声学问题的一些重要且具有挑战性的方面提供准确有效的解决方案。

著录项

  • 作者

    Popescu, Mihaela.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号