首页> 外文学位 >Fault diagnosis of VLSI designs: Cell internal faults and volume diagnosis throughput.
【24h】

Fault diagnosis of VLSI designs: Cell internal faults and volume diagnosis throughput.

机译:VLSI设计的故障诊断:单元内部故障和体积诊断吞吐量。

获取原文
获取原文并翻译 | 示例

摘要

The modern VLSI circuit designs manufactured with advanced technology nodes of 65nm or below exhibit an increasing sensitivity to the variations of manufacturing process. New design-specific and feature-sensitive failure mechanisms are on the rise. Systematic yield issues can be severe due to the complex variability involved in process and layout features. Without improved yield analysis methods, time-to-market is delayed, mature yield is suboptimal, and product quality may suffer, thereby undermining the profitability of the semiconductor company. Diagnosis-driven yield improvement is a methodology that leverages production test results, diagnosis results, and statistical analysis to identify the root cause of yield loss and fix the yield limiters to improve the yield.;To fully leverage fault diagnosis, the diagnosis-driven yield analysis requires that the diagnosis tool should provide high-quality diagnosis results in terms of accuracy and resolution. In other words, the diagnosis tool should report the real defect location without too much ambiguity. The second requirement for fast diagnosis-driven yield improvement is that the diagnosis tool should have the capability of processing a volume of failing dies within a reasonable time so that the statistical analysis can have enough information to identify the systematic yield issues.;In this dissertation, we first propose a method to accurately diagnose the defects inside the library cells when multi-cycle test patterns are used. The methods to diagnose the interconnect defect have been well studied for many years and are successfully practiced in industry. However, for process technology at 90nm or 65nm or below, there is a significant number of manufacturing defects and systematic yield limiters lie inside library cells. The existing cell internal diagnosis methods work well when only combinational test patterns are used, while the accuracy drops dramatically with multi-cycle test patterns. A method to accurately identify the defective cell as well as the failing conditions is presented. The accuracy can be improved up to 94% compared with about 75% accuracy for previous proposed cell internal diagnosis methods.;The next part of this dissertation addresses the throughput problem for diagnosing a volume of failing chips with high transistor counts. We first propose a static design partitioning method to reduce the memory footprint of volume diagnosis. A design is statically partitioned into several smaller sub-circuits, and then the diagnosis is performed only on the smaller sub-circuits. By doing this, the memory usage for processing the smaller sub-circuit can be reduced and the throughput can be improved. We next present a dynamic design partitioning method to improve the throughput and minimize the impact on diagnosis accuracy and resolution. The proposed dynamic design partitioning method is failure dependent, in other words, each failure file has its own design partition. Extensive experiments have been designed to demonstrate the efficiency of the proposed dynamic partitioning method.
机译:使用65nm或以下的先进技术节点制造的现代VLSI电路设计对制造工艺的变化越来越敏感。新的针对特定设计和功能敏感的故障机制正在兴起。由于工艺和布局特征涉及复杂的可变性,因此系统的成品率问题可能很严重。如果没有改进的良率分析方法,上市时间将被延迟,成熟的良率将达不到最佳状态,并且产品质量可能会受到影响,从而损害半导体公司的盈利能力。诊断驱动的产量提高是一种利用生产测试结果,诊断结果和统计分析来确定产量损失的根本原因并修复产量限制因素以提高产量的方法。要充分利用故障诊断,诊断驱动的产量将得到提高。分析要求诊断工具应在准确性和分辨率方面提供高质量的诊断结果。换句话说,诊断工具应报告真实的缺陷位置,而不会产生太多歧义。快速诊断驱动的良率提高的第二个要求是,诊断工具应具有在合理的时间内处理大量失效模具的能力,以便统计分析可以有足够的信息来识别系统的良率问题。 ,我们首先提出一种在使用多周期测试模式时准确诊断库单元内部缺陷的方法。诊断互连缺陷的方法已经进行了很多年的研究,并已在工业上成功地实践。但是,对于90nm或65nm或以下的工艺技术,在库单元内部存在大量制造缺陷,并且系统的产量限制因素也存在。仅使用组合测试模式时,现有的细胞内部诊断方法会很好地工作,而使用多周期测试模式时,准确性会急剧下降。提出了一种准确识别故障电池以及故障条件的方法。与先前提出的单元内部诊断方法的准确度大约为75%相比,该方法的准确度可以提高到94%。本论文的下一部分解决了用于诊断大量具有高晶体管数的故障芯片的吞吐量问题。我们首先提出一种静态设计分区方法,以减少卷诊断的内存占用。将设计静态划分为几个较小的子电路,然后仅对较小的子电路执行诊断。通过这样做,可以减少用于处理较小子电路的存储器使用量,并且可以提高吞吐量。接下来,我们提出一种动态设计分区方法,以提高吞吐量并最小化对诊断准确性和分辨率的影响。所提出的动态设计分区方法是与故障相关的,换句话说,每个故障文件都有自己的设计分区。设计了广泛的实验,以证明所提出的动态分区方法的效率。

著录项

  • 作者

    Fan, Xiaoxin.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号