首页> 外文学位 >Motion and force control in high-performance variable reluctance finger gripper.
【24h】

Motion and force control in high-performance variable reluctance finger gripper.

机译:高性能可变磁阻式抓手中的运动和力控制。

获取原文
获取原文并翻译 | 示例

摘要

Gripper mechanism is commonly found in industrial applications. An ideal gripper should have a simple and low-cost structure, fast and robust response. Various types of grippers have been designed but none of them is capable of fulfilling the requirements of an ideal gripper. Variable Reluctance (VR) actuator has a simple and robust structure, therefore it has been used in low-cost industrial applications. Together with its high-torque density in compared with classical DC motors, VR actuator can be a very attractive solution in gripping mechanism. However, due to its nonlinear characteristics, high-precision gripping applications tend to avoid it by employing other actuators which require less control effort. As a result, VR actuator is not popular in both industrial application and academic research. Due to the recent advancement of semiconductor components and micro-processors, more complex simulation model and advanced controller can be realized. In the past few years, VR actuators have regained much research attention.; The project aims to investigate the feasibility of employing VR technology in precision two-finger gripping application. Under this overall goal, initial research efforts have been devoted to the analysis of VR actuator operating principles and the actual gripper design. Results have shown that torque density can be raised by 3--4% for less than 2A and more than 30% with the use of mutual flux coupling effect when the pole-faces are saturated with 4A. This is achieved by connecting the flux return paths of two single VR fingers together.; In order to fully understand the behaviour of the two-finger VR gripper prototype, detailed characterization experiments have been carried out. Flux-linkage and torque profiles are measured with Alternate Current (AC) current excitation method and direct torque measurement respectively. Measurement results confirm that the VR gripper prototype behaves like a VR actuator and enjoys an increase in efficiency once it operates within the saturation region. Other magnetic characteristics including leakage flux, hysteresis loss and eddy current loss, and spring stiffness have also been measured.; After reviewing various modeling techniques commonly used in VR actuators, the nonlinear characteristics of the VR finger gripper, flux-linkage and torque profiles, are modeled with an exponential description function. Then, a concise dynamic nonlinear model of the VR finger gripper basing on state equations is established. This model is further verified by step responses and confirmed to be an accurate mathematical description for the VR finger gripper. (Abstract shortened by UMI.)
机译:夹爪机构通常在工业应用中发现。理想的抓手应具有简单,低成本的结构,快速而稳定的响应。已经设计了各种类型的夹持器,但是它们都不能够满足理想夹持器的要求。可变磁阻(VR)执行器具有简单而坚固的结构,因此已被用于低成本工业应用中。与传统的直流电动机相比,其高扭矩密度使VR执行器成为抓取机构中非常有吸引力的解决方案。但是,由于其非线性特性,高精度抓取应用倾向于通过采用其他需要较少控制力的执行器来避免这种情况。结果,VR执行器在工业应用和学术研究中都不受欢迎。由于半导体组件和微处理器的最新发展,可以实现更复杂的仿真模型和高级控制器。在过去的几年中,VR执行器重新获得了很多研究关注。该项目旨在研究在精确的两指夹持应用中采用VR技术的可行性。在这个总体目标下,已经开始了对VR执行器操作原理和实际夹具设计的初步研究工作。结果表明,当磁极面充满4A时,利用互通耦合效应,在2A以下时,转矩密度可以提高3--4%,在30%以上时,转矩密度可以提高。这是通过将两个单个VR指的磁通返回路径连接在一起来实现的。为了充分了解两指VR抓手原型的行为,已进行了详细的表征实验。磁链和扭矩曲线分别通过交流(AC)电流激励方法和直接扭矩测量来测量。测量结果证实,VR夹具样机的行为类似于VR致动器,并且一旦在饱和区域内运行,其效率就会提高。还测量了其他磁特性,包括漏磁通,磁滞损耗和涡流损耗以及弹簧刚度。在回顾了VR执行器中常用的各种建模技术后,使用指数描述函数对VR手指夹持器的非线性特性,磁链和扭矩曲线进行了建模。然后,建立了基于状态方程的VR抓手的简洁动态非线性模型。通过阶跃响应进一步验证了该模型,并确认该模型是VR手指夹持器的准确数学描述。 (摘要由UMI缩短。)

著录项

  • 作者

    Chan, Kenneth Kin-Chung.;

  • 作者单位

    Hong Kong Polytechnic University (People's Republic of China).;

  • 授予单位 Hong Kong Polytechnic University (People's Republic of China).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号