首页> 外文学位 >Manipulating quantum dot fluorescence by utilizing Brownian induced near-field interactions with plasmonic nanoparticles.
【24h】

Manipulating quantum dot fluorescence by utilizing Brownian induced near-field interactions with plasmonic nanoparticles.

机译:通过利用布朗与等离子体纳米粒子的近场相互作用来操纵量子点荧光。

获取原文
获取原文并翻译 | 示例

摘要

Quantum dots (QDs) are semiconductor nanocrystals with size-dependent optical properties; thus making them supreme fluorophores. Plasmonic nanoparticles (PNPs), such as gold and silver nanoparticles, support localized surface plasmons on their surface. When the localized surface plasmons are excited, a highly concentrated electromagnetic field is formed near the particle. Therefore, if a QD is within the near-field of a PNP, the emission or excitation of the QD can be enhanced. However, due to Forster Resonance Energy Transfer (FRET), the QD fluorescence could instead be quenched by the proximity of PNPs. Whether enhancement or quenching occurs, is dependent upon the distance and geometry of the nanoparticles. Enhanced QD fluorescence would be helpful in biomedical sensing and imaging and solar energy conversion applications. In addition, quenched QD fluorescence caused by FRET could be applied to FRET-based sensing and imaging in medical diagnosis.;This master's thesis first theoretically models the stochastic movement of QDs and PNPs in an aqueous solution. The simulation is based upon the Direct Simulation Monte Carlo method coupled with Langevin equations. Using this simulation, we were able to predict the percentage of QDs in the near-field region of PNPs. The percentage of QDs in the near-field region of GNPs for a concentration of 1 × 1013 QDs/mL and 5 × 108 GNPs/mL, is a very small percentage of 2 × 10-5%. Yet, the concentration of QDs in the near-field region of GNPs was calculated to be 1,510,000 QDs mL-1.;In addition, this master's thesis experimentally explores the enhancement and quenching of QD emission for different concentrations and sizes of PNPs in aqueous solutions. The fluorescence spectra of two types of QD-PNP mixtures were measured. The first mixture was QDs and gold nanoparticles (GNPs) dispersed in distilled water, where the emission wavelength of the QDs matches the localized surface plasmon excitation wavelength of the GNPs. The second mixture was QDs and silver nanoparticles (SNPs) dispersed in distilled water, where localized surface plasmons affect the excitation of the QDs. For both experiments, the QD emission spectra were monitored while changing the concentration of the PNPs for a fixed concentration of QDs. At low PNP concentrations, the QD emission was enhanced by ∼ 20% for 30 nm GNPs and 80 nm SNPs; however, at high PNP concentrations, the QD emission was usually quenched. This research reveals the QD fluorescence is dependent upon the concentration and size of PNPs and concentration of QDs. Additionally, the enhancement factor was found to be dependent upon the QD concentration and independent upon temperature.
机译:量子点(QD)是具有尺寸依赖性光学特性的半导体纳米晶体。因此使它们成为最高的荧光团。等离子体金纳米颗粒(PNP),例如金和银纳米颗粒,在其表面上支撑局部表面等离激元。当局部表面等离子体激元激发时,在粒子附近会形成高度集中的电磁场。因此,如果QD在PNP的近场内,则可以增强QD的发射或激发。但是,由于Forster共振能量转移(FRET),QD荧光可通过PNP的邻近来淬灭。是否发生增强或猝灭取决于纳米颗粒的距离和几何形状。增强的QD荧光将有助于生物医学传感和成像以及太阳能转换应用。此外,由FRET引起的猝灭的QD荧光可用于基于FRET的医学诊断和成像中。;本论文首先在理论上模拟了水溶液中QD和PNP的随机运动。该模拟基于直接模拟蒙特卡洛方法和Langevin方程。使用此模拟,我们能够预测PNP的近场区域中QD的百分比。浓度为1×1013 QDs / mL和5×108 GNPs / mL时,GNP的近场区域中的QD百分比很小,仅为2×10-5%。然而,计算出的GNPs近场区域中QDs的浓度为1,510,000 QDs mL-1。此外,本硕士论文还通过实验探索了不同浓度和尺寸的PNPs在水溶液中QD发射的增强和猝灭。 。测量了两种QD-PNP混合物的荧光光谱。第一种混合物是QD和分散在蒸馏水中的金纳米颗粒(GNP),其中QD的发射波长与GNP的局部表面等离子体激元激发波长匹配。第二种混合物是量子点和分散在蒸馏水中的银纳米颗粒(SNP),其中局部表面等离子体激元影响量子点的激发。对于这两个实验,在更改固定浓度QD的PNP浓度的同时,监测QD发射光谱。在低PNP浓度下,对于30 nm GNP和80 nm SNP,QD发射提高了约20%。然而,在高PNP浓度下,QD发射通常被淬灭。这项研究揭示了QD荧光取决于PNP的浓度和大小以及QD的浓度。另外,发现增强因子取决于QD浓度并且不依赖于温度。

著录项

  • 作者

    Palombo, Nola.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 M.S.
  • 年度 2012
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号