首页> 外文学位 >Phase-field model for heterogeneous biofilm-solvent interaction and 3-D numerical simulation by GPUs.
【24h】

Phase-field model for heterogeneous biofilm-solvent interaction and 3-D numerical simulation by GPUs.

机译:用于异质生物膜-溶剂相互作用的相场模型和GPU进行的3-D数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Biofilms form when bacteria adhere to surface in moist environments by excreting a slimy, glue-like substance. In nature, biofilms almost always consist of rich mixtures of many species of bacteria. Biofilms are held together by sugary molecular strands, collectively termed "extracellular polymeric substances" or "EPS". The cells produce EPS and are held together by these stands, allowing them to develop complex, three-dimensional, resilient, attached communities.;In our binary (two components) model, we consider the bacteria and the EPS as one effective EPS network component and the solvent along with nutrient as another effective solvent component. We also extend our model to a quasi-ternary model, in which we model the bacteria and EPS network explicitly as two components along with the effective solvent as the third component. We further modify our model to study the bacteria pattern formation. In nature, bacteria are often found in biofilms or other bacterial colonies, which can grow into spectacular patterns visible under the microscope. Also in the laboratory, bacteria such as E. coli form regular geometric patterns like simple concentric rings and elaborate ordered form. The experimental evidence indicates that the pattern formation may be a consequence of a phase separation which is embedded in our model. By using a double well free energy density function and adding a logistic growth model, we found our model captures the pattern formation experiments very well qualitatively. We also added more features to our model like adhesion energy to simulate more realistic 3-D experiments.;We use a finite difference scheme based on a 3-D cube geometry. The numerical scheme is implemented parallelly on graphics processing units (GPUs).
机译:当细菌在潮湿环境中通过分泌粘稠的胶状物质而粘附在表面时,就会形成生物膜。在自然界中,生物膜几乎总是由多种细菌的丰富混合物组成。生物膜通过含糖分子链(统称为“细胞外聚合物质”或“ EPS”)保持在一起。这些细胞产生EPS,并由这些支架保持在一起,从而使它们能够形成复杂的,三维的,有弹性的,附着的社区。;在我们的二元(两个组件)模型中,我们将细菌和EPS视为一种有效的EPS网络组件。和溶剂以及营养素一起作为另一种有效的溶剂成分。我们还将模型扩展为准三元模型,在该模型中,我们将细菌和EPS网络显式建模为两个组件,而有效溶剂作为第三组件。我们进一步修改模型以研究细菌模式的形成。在自然界中,通常在生物膜或其他细菌菌落中发现细菌,这些细菌可以生长成在显微镜下可见的壮观图案。同样在实验室中,诸如大肠杆菌的细菌会形成规则的几何图案,例如简单的同心环和精细的有序形式。实验证据表明,图案形成可能是嵌入在我们模型中的相分离的结果。通过使用双井自由能密度函数并添加逻辑增长模型,我们发现我们的模型在质量上很好地捕获了模式形成实验。我们还向模型添加了更多功能,例如粘附能,以模拟更逼真的3-D实验。;我们使用基于3-D立方体几何形状的有限差分方案。数值方案在图形处理单元(GPU)上并行实现。

著录项

  • 作者

    Chen, Chen.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Applied Mathematics.;Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号