首页> 外文学位 >Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation.
【24h】

Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation.

机译:过滤高分辨率高光谱图像并对其进行分析,以量化水质参数和水生植被。

获取原文
获取原文并翻译 | 示例

摘要

High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification.;The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results.;The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water surface reflectance and water depths was conducted and non-parametric classifiers such as ANN, SVM and SAM were tested and compared. Quality assessment indicated better classification and detection when non-parametric classifiers were applied to normalized or depth invariant transform images. Best classification accuracy of 73% was achieved when ANN is applied on normalized image and best detection accuracy of around 92% was obtained when SVM or SAM was applied on depth invariant images.
机译:高分辨率的高光谱图像(机载或地面图像)正成为各种领域的有用分析工具,包括农业和水生系统。这些图像经常被条纹和噪声污染,导致信噪比降低,特别是在信号自然较低的水生区域。本研究探讨了过滤高空间分辨率高光谱图像的有效方法,以及该图像在水质参数估计和水生植被分类中的应用。;高光谱图像的条纹图案是非参数性的,难以过滤。在这项研究中,研究了一种基于小波分析和自适应傅立叶域归一化的去条纹算法。发现该算法的结果优于其他可用算法,并且产生了最高的峰信噪比改善。该算法在单个图像波段和最大噪声分数(MNF)转换图像的选定波段上实现。结果表明,MNF域中的图像过滤是有效的,并且产生了最好的结果。;该研究研究了分析高光谱图像的方法,以估计案例2水域的水质参数和绘制水生植被。分析了地面高光谱图像,以确定水产养殖池塘中的叶绿素-a(Chl-a)浓度。实施了两波段和三波段指标,并评估了使用水下反射率目标的效果。发现实验室测量值与从高光谱图像计算出的两波段和三波段光谱指数密切相关。发现测定系数(R2)值分别为0.833和0.862(无淹没目标),而使用淹没目标可获得更强的0.975和0.982。机载高光谱图像用于检测和分类黑河河口系统中的水生植被。对水表面反射率和水深进行了图像归一化,并测试和比较了非参数分类器(例如ANN,SVM和SAM)。当将非参数分类器应用于标准化或深度不变的变换图像时,质量评估表明分类和检测效果更好。当对归一化图像应用ANN时,最佳分类精度达到73%,而对深度不变图像应用SVM或SAM时,则达到92%左右的最佳检测精度。

著录项

  • 作者

    Pande-Chhetri, Roshan.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Remote Sensing.;Water Resource Management.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号