首页> 外文学位 >Damage mechanisms of matrix cracking and interfacial debonding in random fiber composites under dynamic loadings.
【24h】

Damage mechanisms of matrix cracking and interfacial debonding in random fiber composites under dynamic loadings.

机译:动态载荷下随机纤维复合材料基体开裂和界面剥离的破坏机理。

获取原文
获取原文并翻译 | 示例

摘要

By considering the wide applications of composite materials, it is necessary to have a proper knowledge of dynamic behavior as well as static behavior reflecting the damage in composite materials. Strain rates have significant effects on dynamic behavior in composite materials when they are under dynamic loadings.;In this thesis, a multiscale numerical approach with finite element code ABAQUS is developed to characterize failure criteria to express static and dynamic damage mechanisms of matrix cracking and interfacial debonding under uniaxial tensile loadings for composite materials. The random epoxy/glass composite material is investigated under three strain rates: quasi-static, intermediate and high, corresponding to 10-4, 1 and 200 s-1, respectively. A representative volume element (RVE) of a random glass fiber composite is employed to analyze microscale damage mechanisms of matrix cracking and interfacial debonding, while the associated damage variables are defined and applied in a mesoscale stiffness reduction law. The macroscopic response of the homogenized damage model is investigated using finite element analysis and validated through experiments. The random epoxy/glass composite specimens fail at a smaller strain; there is less matrix cracking but more interfacial debonding accumulated as the strain rate increases. The dynamic simulation results of stress strain response are compared with experimental tests carried out on composite specimens, and a respectable agreement between them under the low strain rate is observed. Finally, a case study of a random glass fiber composite plate containing a central hole subjected to tensile loading is performed to illustrate the applicability of the multiscale damage model.
机译:考虑到复合材料的广泛应用,有必要对反映复合材料损伤的动态行为和静态行为有适当的了解。应变速率对复合材料在动态载荷下的动态行为具有重要影响。;本文采用有限元代码ABAQUS的多尺度数值方法来表征破坏准则,以表达基体开裂和界面的静态和动态损伤机理。复合材料在单轴拉伸载荷下脱胶。在三种应变率下研究了无规环氧/玻璃复合材料:准静态,中等和高应变率,分别对应于10-4、1和200 s-1。采用无规玻璃纤维复合材料的代表性体积元素(RVE)分析基体开裂和界面剥离的微观损伤机理,同时定义相关的损伤变量并将其应用于中尺度刚度降低定律。均质损伤模型的宏观响应使用有限元分析进行了研究,并通过实验进行了验证。随机的环氧/玻璃复合材料试样在较小的应变下破裂;随着应变率的增加,基体开裂较少,但界面脱粘积累的更多。将应力应变响应的动态模拟结果与在复合材料试件上进行的实验测试进行了比较,并且在低应变速率下观察到它们之间的良好一致性。最后,以一个随机玻璃纤维复合材料板为例,该玻璃纤维复合材料板包含一个承受拉力作用的中心孔,以说明多尺度损伤模型的适用性。

著录项

  • 作者

    Yang, Wensong.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号