首页> 外文学位 >Algorithms, models and metrics for the design of workholding using part concavities.
【24h】

Algorithms, models and metrics for the design of workholding using part concavities.

机译:使用零件凹面设计工件的算法,模型和度量。

获取原文
获取原文并翻译 | 示例

摘要

In manufacturing, assembly and inspection, the term "workholding" refers to the tooling and processes required to hold parts in place. Workholding includes both grasping and fixturing. Grasping generally refers to holding a part with a robotic end-effector, primarily for moving it, and fixturing refers to holding a part on a rigid base using clamps and other elements primary for machining, painting, or welding. The results in this thesis apply to both grasping and fixturing: we will emphasize grasping in chapters III, IV, VI and VII, and fixturing in chapter V.; Workholding must align and accurately hold parts. The algorithmic design of workholding for rigid parts has been studied in detail for contact at part edges. In this dissertation, we consider workholding using contacts at concavities for rigid and deformable parts, and the algorithmic design and planning of workholding. Using concavities gives the advantages of self-alignment of the part to the fixture, and higher accuracy in part orientation, as concavities generally correspond to precise datum points. For deformable parts, concavities can be created or existing concavities accentuated to hold the part.; We study and propose models, metrics and algorithms for the design of workholding by starting with rigid parts and extending the results and analysis to deformable parts. We first identify exact solution sets of candidate workholding configurations and then use approximate methods to design one or more fixtures for a given part. Our workholding design process thus consists of first determining criticalities in part geometry using computational geometric methods, followed by numerical and heuristic procedures that evaluate candidate workholding configurations that lie within the bounds of the criticalities based on numerical approximations. To this end, we propose new workholding hardware and mathematical models to back the hardware. Based on the hardware, we also derive metrics and formal conditions for workholding.; We begin by studying rigid two-dimensional polygonal parts held on a horizontal plane held by a pair of vertical cylindrical jaws, with the jaws engaging part concavities. We call this new class of grips 2D v-grips . For 2D v-grips, we represent the distance between the jaws as a function of positions of the jaws along the perimeter, and prove the equivalence of immobility of the part and extrema of the distance function under conditions of concavity at the points of contact. (Abstract shortened by UMI.)
机译:在制造,组装和检查中,术语“工件固定”是指将零件固定到位所需的工具和过程。夹具包括抓取和固定。抓握通常是指用机器人末端执行器固定零件,主要是用于移动零件,夹具是指使用夹具和其他主要用于机械加工,喷漆或焊接的元件将零件固定在刚性基座上。本文的研究结果适用于抓紧和固定:我们将在第三,第四,第六和第七章中强调抓紧,在第五章中强调固定。夹具必须对齐并准确固定零件。对于刚性零件的工件夹持的算法设计已进行了详细研究,以实现零件边缘的接触。在本文中,我们考虑使用在凹处接触刚性和可变形零件的夹具,以及夹具的算法设计和规划。使用凹面具有将零件自动对准夹具的优点,并且零件定向的精度更高,因为凹面通常对应于精确的基准点。对于可变形零件,可以创建凹面或突出现有凹面以固定零件。我们从刚性零件开始并将结果和分析扩展到可变形零件,研究并提出用于夹具设计的模型,度量和算法。我们首先确定候选工件夹具配置的精确解决方案集,然后使用近似方法为给定零件设计一个或多个夹具。因此,我们的夹具设计过程包括:首先使用计算几何方法确定零件几何形状的临界度,然后进行数值和启发式过程,这些过程基于数值近似值评估位于临界度范围内的候选工件构造。为此,我们提出了新的夹具硬件和数学模型来支持该硬件。基于硬件,我们还可以得出度量标准和正式条件。我们首先研究由一对垂直圆柱夹爪固定在水平面上的刚性二维多边形零件,这些夹爪接合零件的凹面。我们称此类为2D v-grips握把的新类别。对于2D v形夹,我们将钳口之间的距离表示为钳口沿周向位置的函数,并证明在凹点条件下接触点处零件的固定性和距离函数的极值相等。 (摘要由UMI缩短。)

著录项

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 一般工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号