首页> 外文学位 >Efficient and Flexible Solution Strategies for Large-Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems.
【24h】

Efficient and Flexible Solution Strategies for Large-Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems.

机译:针对大规模,强耦合多物理场分析和优化问题的高效灵活的解决方案策略。

获取原文
获取原文并翻译 | 示例

摘要

Aerospace problems are characterized by strong coupling of different disciplines, such as fluid-structure interactions. There has been much research over the years on developing numerical solution methods tailored to each of the different disciplines. The classical approach to solving these strongly coupled systems is to stitch together these individual solvers by solving for one discipline and using the solution as boundary conditions for the successive disciplines. In more recent years, research has focused on numerical methods that handle solving coupled disciplines together. These methods offer the potential of better computational efficiency. These coupled solution methods range from monolithic solution strategies to decoupled partitioned strategies. This research develops a flexible finite element analysis tool which is capable of analyzing a range of aerospace problems including highly coupled incompressible fluid-structure interactions and turbulent compressible flows. The goal of this research is to access the viability of streamline-upwind Petrov-Galerkin (SUPG) finite element analysis for compressible turbulent flows. Additionally, this research uses a selection of nonlinear solution methods, linear solvers, iterative preconditioners, varying degrees of coupling, and coupling strategies to provide insight into the computational efficiency of these methods as they apply to turbulent compressible flows and incompressible fluid-structure interaction problems. The results suggest that SUPG finite element analysis for compressible flows may not be robust enough for optimization problems due to ill-conditioned matrices in the linear approximation. This research also shows that it is the degree of coupling and criticality of the coupling that drives the selection of the most efficient nonlinear and linear solution methods.
机译:航空航天问题的特征是不同学科之间的强耦合,例如流固耦合。多年来,在开发针对每种不同学科的数值求解方法方面进行了大量研究。解决这些强耦合系统的经典方法是通过求解一个学科并将这些解决方案用作后续学科的边界条件,将这些单独的求解器缝合在一起。近年来,研究集中在处理耦合学科的数值方法上。这些方法提供了更好的计算效率的潜力。这些耦合解决方案方法从整体解决方案策略到解耦分区策略。这项研究开发了一种灵活的有限元分析工具,该工具能够分析一系列航空航天问题,包括高度耦合的不可压缩的流固耦合和可压缩的湍流。这项研究的目的是获得可压缩湍流的流线上风Petrov-Galerkin(SUPG)有限元分析的可行性。此外,这项研究还使用了非线性求解方法,线性求解器,迭代预处理器,不同程度的耦合以及耦合策略,以深入了解这些方法在湍流可压缩流和不可压缩流固耦合问题中的计算效率。 。结果表明,由于线性近似中条件不佳的矩阵,可压缩流的SUPG有限元分析对于优化问题可能不够鲁棒。该研究还表明,正是耦合的程度和耦合的关键性决定了最有效的非线性和线性求解方法的选择。

著录项

  • 作者

    Westfall, James.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Aerospace engineering.;Mechanics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号