首页> 外文学位 >Manufacturing and joining technology of fibre-reinforced composite materials for tubular components under biaxial loading conditions.
【24h】

Manufacturing and joining technology of fibre-reinforced composite materials for tubular components under biaxial loading conditions.

机译:双轴加载条件下用于管状部件的纤维增强复合材料的制造和连接技术。

获取原文
获取原文并翻译 | 示例

摘要

Pressure-retaining tubular structures (e.g. pipes) could be advantageously produced from fibre-reinforced polymeric composites (FRPC). Due to favourable properties, e.g. material anisotropy and corrosion resistance, these structures frequently outperform traditional metallic components. The axisymmetric shape is suited for the efficient filament winding process, which facilitates automated and continuous production. Improvements in performance and economy may thus be realised. Despite these advantages a limited understanding of damage behaviour, deficient design methodologies, and a lack of economical joining techniques have hampered an extensive utilisation of FRPC in high-pressure applications.; A favourable design for all-composite piping ought to possess the following characteristics: (a) The pipe body possesses adequate strengths under biaxial loadings associated with installation and in-service conditions; (b) the structure exhibits leak-before-burst failure (i.e. fail-safe design); and (c) joining of pipe sections is field-friendly and economical. The current study investigates the feasibility of such structures. A unique approach encompassing the design, manufacturing and joining was employed. Firstly, the manufacturing process was studied to identify efficient winding conditions (such as fibre tensioning) for optimal pipe performance. Secondly, different fibre architectures were analysed with regards to strength and damage behaviour. Finally, a unique yet simple adhesive bonding technique was employed for the integration of subcomponents. Due to the lack of suitable criteria for leakage prediction (i.e. the predominant failure mode), here the emphasis is on experimental investigations under monotonic loading conditions. Glass-fibre and thermoset resin were utilised to fabricate small-scale model as well as large-scale prototype specimens. Using an innovative permeability-based method and conventional strength-of-material approaches an investigation on specimen scaling/size effects was conducted. Experiments were complemented using analytical methods for the determination of material and structural properties (e.g. pipe wall thickness); the joint geometry was optimised using finite element techniques.; Best overall prototype performance was achieved for a multi-angle lay-up with exterior filaments inclined to provide axial reinforcement. Namely, a [+/-603,+/-30]T fibre architecture exhibited superior strengths under the applied loadings. Favourable winding conditions were identified producing intermediate fibre volume fractions (∼60%) and low void contents (∼1%). In conjunction with bonded overlap sleeve joints, which were employed for their field-friendliness and cost-effectiveness, prototype structures were able to satisfy the aforementioned design requirements.
机译:保压管状结构(例如管道)可以有利地由纤维增强的聚合物复合材料(FRPC)制成。由于良好的特性,例如由于材料的各向异性和耐腐蚀性,这些结构通常优于传统的金属部件。轴对称形状适用于高效的长丝缠绕工艺,从而有利于自动化和连续生产。因此可以实现性能和经济上的改善。尽管有这些优点,但对破坏行为的了解有限,设计方法不足以及缺乏经济的连接技术,都妨碍了FRPC在高压应用中的广泛使用。全复合管道的有利设计应具有以下特征:(a)管体在与安装和使用条件相关的双轴载荷下具有足够的强度; (b)该结构出现爆炸前泄漏故障(即故障安全设计); (c)管段的连接是现场友好且经济的。当前的研究调查了这种结构的可行性。采用了涵盖设计,制造和连接的独特方法。首先,研究了制造过程,以确定有效的缠绕条件(例如纤维张紧),以获得最佳的管道性能。其次,针对强度和破坏行为,分析了不同的光纤架构。最后,采用独特但简单的粘合剂粘合技术来集成子组件。由于缺乏合适的泄漏预测标准(即主要的失效模式),因此这里的重点是在单调加载条件下进行的实验研究。玻璃纤维和热固性树脂被用来制造小规模的模型以及大规模的原型样品。使用创新的基于渗透率的方法和传统的材料强度方法,对标本缩放/尺寸效应进行了研究。使用分析方法对实验进行补充,以确定材料和结构特性(例如管壁厚度);使用有限元技术优化了接头的几何形状。对于具有倾斜的外部细丝以提供轴向加固的多角度铺层,可以达到最佳的总体原型性能。即,[+/- 603,+ /-30] T纤维结构在施加的载荷下显示出优异的强度。确定了良好的卷绕条件,产生了中等的纤维体积分数(〜60%)和低的空隙含量(〜1%)。结合以其现场友好性和成本效益而被采用的粘合搭接套筒接头,原型结构能够满足上述设计要求。

著录项

  • 作者

    Mertiny, Pierre.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号