首页> 外文学位 >Theoretical investigations of complex oxides: Understanding bulk ferroelectrics and oxide-metal interfaces.
【24h】

Theoretical investigations of complex oxides: Understanding bulk ferroelectrics and oxide-metal interfaces.

机译:复杂氧化物的理论研究:了解块状铁电体和氧化物-金属界面。

获取原文
获取原文并翻译 | 示例

摘要

Complex oxides are among the most abundant minerals on earth. While the mixture of metal elements and oxygen ions is common to all complex oxides, it is the interactions of these elements which determine the material's response to its environment. Probing the bonding interactions within these materials is fundamental to the design of new materials. This thesis uses both ab initio and classical modeling to examine the bulk and interfacial properties of complex oxides. Ab initio density functional theory (DFT) calculations are used to study how composition and ordering of Ti and Zr in PbZr1-xTixO3 (PZT) affect the displacement of ions within the PZT unit cell. The investigation of a variety of compositions and arrangements of these cations made it possible to distinguish the physical and chemical properties which are dependent on local environment from those intrinsic to the material. However, a comparison of the calculated pair distribution functions (PDF) with those obtained from neutron scattering experiments suggested that the DFT supercells used were too small to account for the long range disorder in the real material. To correct this, a classical model which reproduces the short range interactions in DFT calculations and is capable of simulating larger unit cells was constructed. These results indicated that the local interactions governing the DFT calculations were also key in defining the macroscopic structure of PZT. Guided by this theory, the model was reparameterized to study the temperature dependent phase transition of PbTiO3 (PT). These simulations demonstrated that the principles inherent in the classical model are valid for investigating dynamical properties of various perovskite oxides. The final project presented in this thesis explores the mechanism of charge transfer at a metal-oxide interface and its influence on the metal surface properties. Here it is shown that a mixture of ionic and covalent bonding at this interface affects the charge distribution in the metal's d-orbitals. Changes in the electronic structure of the d-orbitals are expressed in differences in sigma- and pi-bonds formed with CO at the metal surface. This in turn alters the overall binding strength of CO to the metal surface. Furthermore, these calculations suggest that this is a nanoscale effect as the CO binding energies return to Pt (111) values when 4 or 5 layers of Pt are deposited on the alpha-alumina supports.
机译:复合氧化物是地球上最丰富的矿物之一。金属元素和氧离子的混合物是所有复合氧化物所共有的,但正是这些元素之间的相互作用决定了材料对环境的响应。探索这些材料之间的键相互作用是新材料设计的基础。本文使用从头算和经典建模两种方法来研究复杂氧化物的体积和界面性质。从头算密度函数理论(DFT)计算用于研究PbZr1-xTixO3(PZT)中Ti和Zr的组成和有序化如何影响PZT晶胞内离子的位移。对这些阳离子的各种组成和排列的研究使得可以将取决于局部环境的物理和化学性质与材料固有的性质区别开来。但是,将计算的对分布函数(PDF)与从中子散射实验获得的对分布函数进行比较,表明所用的DFT超级电池太小,无法说明真实材料中的长距离无序。为了纠正这一点,构建了一个经典模型,该模型在DFT计算中再现了短程相互作用,并且能够模拟较大的晶胞。这些结果表明,控制DFT计算的局部相互作用也是定义PZT宏观结构的关键。以此理论为指导,对该模型进行重新参数化,以研究PbTiO3(PT)的温度相关相变。这些模拟表明,经典模型中固有的原理对于研究各种钙钛矿氧化物的动力学性质是有效的。本文提出的最终项目探讨了金属氧化物界面上电荷转移的机理及其对金属表面性能的影响。此处显示离子和共价键在该界面处的混合会影响金属d轨道中的电荷分布。 d轨道电子结构的变化以在金属表面与CO形成的σ键和pi键的差异表示。这进而改变了CO与金属表面的整体结合强度。此外,这些计算表明这是纳米级效应,因为当在α-氧化铝载体上沉积4或5层Pt时,CO结合能返回Pt(111)值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号