首页> 外文学位 >A Bayesian experimental design approach to structural health monitoring with application to ultrasonic guided waves.
【24h】

A Bayesian experimental design approach to structural health monitoring with application to ultrasonic guided waves.

机译:贝叶斯实验设计方法用于结构健康监测,并应用于超声波导波。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation will present the application of a Bayesian experimental design framework to structural health monitoring (SHM). When applied to SHM, Bayesian experimental design (BED) is founded on the minimization of the expected loss, i.e., Bayes Risk, of the SHM process through the optimization of the detection algorithm and system hardware design parameters. This expected loss is a function of the detector and system design, the cost of decision/detection error, and the distribution of prior probabilities of damage.;While the presented framework is general to all SHM applications, particular attention is paid to guided wave-based SHM (GWSHM). GWSHM is the process of exciting user-defined mechanical waves in plate or beam-like structures and sensing the response in order to identify damage, which manifests itself though scattering and attenuation of the traveling waves.;Using the BED framework, both a detection-centric and a localization-centric optimal detector are derived for GWSHM based on likelihood tests. In order to objectively evaluate the performance in practical terms for the users of SHM systems, the dissertation will introduce three new statistics-based tools: the Bayesian combined receiver operating characteristic (BCROC) curve, the localization probability density (LPDF) estimate, and the localizer operating characteristic (LOC) curve. It will demonstrate the superior performance of the BED-based detectors over existing GWSHM algorithms through application to a geometrically complex test structure.;Next, the BED framework is used to establish both a model-based and data-driven system design process for GWSHM to ascertain the optimal placement of both actuators and sensors according to application-specific decision error cost functions. This design process considers, among other things, non-uniform probabilities of damage, non-symmetric scatterers, the optimization of both sensor placement and sensor count, and robustness to sensor failure. The sensor placement design process is demonstrated and verified using several hypothetical and real-world design scenarios.
机译:论文将提出贝叶斯实验设计框架在结构健康监测中的应用。当将贝叶斯实验设计(BED)应用于SHM时,其基础是通过优化检测算法和系统硬件设计参数来使SHM过程的预期损失(即贝叶斯风险)最小化。这种预期的损失取决于探测器和系统设计,决策/探测错误的成本以及先验损坏概率的分布。虽然所提出的框架适用于所有SHM应用,但应特别注意导波-基于SHM(GWSHM)。 GWSHM是激发用户定义的板状或梁状结构的机械波并感测响应以识别损坏的过程,该过程通过行波的散射和衰减来体现出来。基于似然性测试,针对GWSHM推导了中心和局部定位最优检测器。为了客观地评估SHM系统用户的实际性能,本文将介绍三种基于统计的新工具:贝叶斯组合接收机工作特性曲线(BCROC),定位概率密度(LPDF)估计和定位器工作特性(LOC)曲线。通过将其应用于几何复杂的测试结构,将证明基于BED的探测器优于现有的GWSHM算法。接下来,BED框架用于为GWSHM建立基于模型和数据驱动的系统设计流程,根据特定应用的决策误差成本函数确定执行器和传感器的最佳位置。除其他事项外,此设计过程考虑了损坏的不均匀概率,散射体不对称,传感器放置和传感器数量的优化以及传感器故障的稳健性。使用几种假设的和实际的设计方案演示并验证了传感器放置设计过程。

著录项

  • 作者

    Flynn, Eric Brian.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Aerospace.;Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号