首页> 外文学位 >Incorporation of a general strain-to-failure fracture criterion into a stress-based plasticity model through a time-to-failure softening mechanism.
【24h】

Incorporation of a general strain-to-failure fracture criterion into a stress-based plasticity model through a time-to-failure softening mechanism.

机译:通过失效时间软化机制,将一般应变失效断裂准则合并到基于应力的可塑性模型中。

获取原文
获取原文并翻译 | 示例

摘要

Many classic and contemporary fracture models are based on some variant of strain-to-failure with linear accumulation of damage. These models are categorized as strain-to-failure models, even if the damage weighting function is stress-based. Recent experimental investigations suggest that strain-to-failure fracture models are a natural choice when modeling metals. Notably, the third stress invariant (J3) dependence of strain-to-failure has been shown to be nonnegligible. In response to the metal-fracture literature proposing a multitude of new strain-to-failure fracture models with little demonstration of predictiveness in large-scale general-loading simulations, this research implements a strain-to-failure framework into a generalized plasticity model, Kayenta, tested in conjunction with three representative fracture models: constant equivalent-strain-to-failure, Johnson-Cook strain-to-failure theory, and Xue-Wierzbicki strain-to-failure theory. These models constitute a sampling of J2, J3, strain-rate, and temperature dependence that greatly extend the softening options available in Kayenta. As Kayenta is portable and already available in multiple host codes, this research allows analysts to rapidly gauge which failure theory is best suited to their applications, thus potentially allowing one of these theories to emerge as more broadly valid in general loading problems. This fracture framework is designed to operate in the realm of time-to-failure so as to function seamlessly with the current softening implementation in Kayenta and lay the foundation for mixed-response fracture behavior to transition between ductile to brittle fracture models dynamically as the stress state evolves.
机译:许多经典和现代的断裂模型都基于应变到应变的某些变体,且损伤线性累积。即使损伤加权函数是基于应力的,这些模型也被归类为应变失效模型。最近的实验研究表明,在对金属进行建模时,从应变到断裂的断裂模型是一种自然选择。值得注意的是,应变失效的第三应力不变量(J3)依赖性已被证明是不可忽略的。由于金属断裂文献提出了许多新的应变-断裂断裂模型,而在大规模一般荷载模拟中几乎没有预测性,因此本研究将应变-断裂框架应用于广义可塑性模型, Kayenta与三种代表性断裂模型一起进行了测试:恒定等效应变-失效,Johnson-Cook应变-失效理论和Xue-Wierzbicki应变-失效理论。这些模型构成了J2,J3,应变率和温度相关性的样本,极大地扩展了Kayenta中可用的软化选项。由于Kayenta具有可移植性,并且已经可以在多个主机代码中使用,因此该研究使分析人员可以快速确定最适合其应用的故障理论,从而有可能使这些理论之一在一般的载荷问题中变得更为广泛有效。该断裂框架设计为在失效时间范围内运行,以便与Kayenta中当前的软化实现无缝配合,并为混合响应断裂行为随应力动态变化而在延性至脆性断裂模型之间过渡奠定基础状态在演变。

著录项

  • 作者

    Swan, Matthew Scot.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2012
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号