首页> 外文学位 >The mechanisms for passive suppression of fluctuating surface pressure in a supersonic cavity flow.
【24h】

The mechanisms for passive suppression of fluctuating surface pressure in a supersonic cavity flow.

机译:被动抑制超声速腔流中波动的表面压力的机制。

获取原文
获取原文并翻译 | 示例

摘要

The study of the passive suppression of supersonic cavity flow using a rod immersed in the upstream boundary layer is a unique and challenging fluid mechanics problem. The flowfield includes a compressible shear layer interacting with a complex pattern of compression and expansion waves. The turbulent fluctuations inside the shear layer may be amplified through a feedback-receptivity cycle resulting in increased pressure loading on the surfaces of the cavity. Studying the mechanisms dictating the suppression of these amplified turbulent fluctuations when control is present makes for an enlightening and challenging problem. A combined experimental and time accurate numerical study using detached-eddy simulation was conducted to study the suppression of pressure fluctuations due to supersonic cavity flow at Minfinity = 1.4 over an open rectangular cavity with a length-to-depth ratio of six. In this study, the focus is confined to suppression due to a rod spoiler. The experimental measurements included temporally resolved fluctuating surface pressure measurements coupled with spatially resolved particle image velocimetry.;Analysis of the fluctuating pressures on the cavity surfaces included investigations of the root-mean-square fluctuating pressure, spectral analysis, correlation and coherence analysis and joint time-frequency spectrograms. The shear layer flowfield and turbulence was studied using ensemble averaged turbulent statistics including two-point spatial turbulent velocity correlations and Proper Orthogonal Decomposition. Results indicate that the most effective suppression of the fluctuating pressures was achieved when a rod sized roughly 40% of the boundary layer was placed such that the top of the rod was near the top edge of the boundary layer. It was shown that the rod leads to a thicker shear layer that initially spreads more rapidly. The turbulent structures in the wake of the rod interact with the cavity shear layer with a time periodic excitation which lifts the shear layer near the cavity leading edge. The structures are smaller and less organized which is believed to lead to a shear layer that is less receptive to the disturbances propagating upstream inside the cavity. The controlled cavity exhibits an altered aft wall impingement point which is due to the lifting and altered flapping nature of the shear layer. The upstream propagating disturbance emanating from the aft wall is thus weakened due in part to the lower speed flow impinging on the aft wall. These coupled events lead to drastically reduced tonal components (which are lowered to near broadband levels) and notable lowering of the broadband levels of the fluctuating pressure measured on the cavity surfaces.
机译:使用浸入上游边界层的杆对超音速空腔流动进行被动抑制的研究是一个独特且具有挑战性的流体力学问题。该流场包括可压缩的剪切层,可压缩的剪切层与压缩和膨胀波的复杂模式相互作用。剪切层内部的湍流波动可通过反馈接收循环而被放大,从而导致空腔表面的压力加载增加。研究控制存在时抑制这些放大的湍流波动的机理,这将产生一个启发性和挑战性的问题。进行了结合分离涡流模拟的实验和时间精确数值研究,以研究在长深比为6的开放矩形腔体上,在Minfinity = 1.4时,由于超声速腔体流动而引起的压力波动的抑制。在这项研究中,重点仅限于由于扰流板引起的抑制。实验测量包括时间分辨波动表面压力测量和空间分辨粒子图像测速法。对腔表面波动压力的分析包括对均方根波动压力的研究,光谱分析,相关和相干分析以及联合时间。频谱图。利用包括两点空间湍流速度相关性和正确正交分解在内的整体平均湍流统计数据研究了剪切层的流场和湍流。结果表明,当放置尺寸约为边界层大小40%的棒,使得棒的顶部靠近边界层的上边缘时,可以最有效地抑制波动压力。结果表明,该杆导致较厚的剪切层,该剪切层最初扩散更快。杆尾部的湍流结构与腔体剪切层相互作用,并具有时间周期性的激励,从而将剪切层提升到腔体前缘附近。该结构较小且组织较少,这被认为导致产生剪切层,该剪切层较少接受在腔体内上游传播的干扰。由于剪切层的提升和改变的拍打特性,受控的腔室呈现出改变的后壁撞击点。因此,从后壁发出的上游传播干扰被削弱了,部分原因是撞击在后壁上的速度较低。这些耦合事件导致音调分量大大减少(降低到接近宽带水平),并显着降低了腔表面测量的脉动压力的宽带水平。

著录项

  • 作者

    Dudley, Jonathan G.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号