首页> 外文学位 >An Accessible Cognitive Modeling Tool for Evaluation of Human-Automation Interaction in the Systems Design Process.
【24h】

An Accessible Cognitive Modeling Tool for Evaluation of Human-Automation Interaction in the Systems Design Process.

机译:一种可访问的认知建模工具,用于评估系统设计过程中的人机交互。

获取原文
获取原文并翻译 | 示例

摘要

One of the main limitations of existing approaches to complex human-in-the-loop system design is the requirement for empirical data as a basis for alternative design selections. Experimental studies can be time consuming and costly. In addition, design decisions are often based on collections of design guidelines with limited theoretical explanations for why such guidelines may be effective from a human information processing (HIP) perspective. The lack of a cognitive explanation limits understanding of when and how guidelines can be applied. In order to better support conceptual design, various cognitive modeling techniques and tools have been developed based on HIP architectures. However, these techniques and tools also have several limitations from a design perspective. Existing tools are not easy to use and designers or developers may need extensive training and practice in use. Furthermore, there is currently no fundamental set of tool capabilities, such as providing a task workload analysis or identifying patterns of HIP (e.g., memory use), simulating visual object use (e.g., eye movements), providing interface design support, etc. This research integrated various capabilities of existing modeling tools into a new enhanced cognitive modeling language based on GOMS (Goals, Operators, Methods, and Selection Rules).;While GOMS modeling methods and GOMS language are considered easy to learn and use, the modeling approach has several limitations. The language is limited to representing expert behavior in tasks. In addition, GOMS models do not support modeling of lower-level behaviors, such as specific forms of visual processing (e.g., foveal vs. peripheral) as well as parallel processing of visual and motor operations. Another major limitation of GOMS modeling is that the operator time estimates are deterministic. Therefore, model output may not accurately represent individual differences in performance or the stochastic nature of human behavior in complex tasks. On the basis of these limitations, there is a need to develop a new cognitive modeling tools. This research developed a computational cognitive modeling tool using the enhanced-GOMS language to aid complex system designers in assessing the potential for automation-induced human performance errors. Application of the tool focused on pilot use of automation on the commercial aircraft flight-deck. The GOMS language was extended for application to this context. Output of the tool was compared with experiment data for validation purposes. It is expected that this approach would allow for accurate explanation and prediction of user behaviors during the design of complex aircraft systems and/or interfaces.;The modeling tool development included: a prototyping module; a user activity flow diagram (AFD) development module; an AFD to E-GOMS language translator; an E-GOMSL editor; a model parser and compiler; and a model simulation tool and report generator. This research used Microsoft (MS) Excel with Visual Basic for Application (VBA) Macros in the modeling tool development. A designer is able to use images to define a prototype including visual and non-visual objects (e.g., auditory interfaces). The designer can also develop an AFD based on the results of a cognitive task analysis (CTA) involving expert operators. The AFD is directly translated to E-GOMS by the translator module. Alternatively, the designer is able to code an E-GOMS code model using the E-GOMS editor. After coding the model, the parser and compiler can be used to obtain a quantitative analysis including task execution times based on stochastic estimates of individual operation times and a workload analysis. With these results and the GOMSL models, the simulator can be used to visualize the flow of HIP, represent patterns in HIP, and present a graphical workload analysis. Last, the report generator can be used to produce a summary of the quantitative analysis and simulation.;In order to validate the results of the modeling tool, a flight simulator experiment was conducted with a futuristic forms of cockpit automation (a Continuous Descent Approach (CDA) tool for flight route replanning). A CTA was conducted to identify pilot behaviors and to generate a data set for validation of the cognitive model output. An E-GOMS model of pilot behavior with the CDA tool was compared against the experiment data. Results demonstrated that the modeling approach provided as it was expected that this approach would allow for accurate explanation and prediction of pilot cockpit behaviors and that the tool would be useful during the design of complex aircraft systems and/or interfaces.
机译:现有的复杂的在环系统设计方法的主要局限之一是需要经验数据作为替代设计选择的基础。实验研究可能既耗时又昂贵。此外,设计决策通常基于设计指南的集合,而对于从人信息处理(HIP)角度来看这些指南为何有效的理论解释有限。缺乏认知解释限制了对何时以及如何应用指南的理解。为了更好地支持概念设计,已经基于HIP体系结构开发了各种认知建模技术和工具。但是,从设计的角度来看,这些技术和工具也有一些局限性。现有工具不容易使用,设计人员或开发人员可能需要广泛的培训和使用实践。此外,当前还没有基本的工具功能集,例如提供任务工作负载分析或识别HIP模式(例如,内存使用),模拟视觉对象的使用(例如,眼睛移动),提供界面设计支持等。研究将现有建模工具的各种功能集成到基于GOMS(目标,运算符,方法和选择规则)的新的增强型认知建模语言中。虽然认为GOMS建模方法和GOMS语言易于学习和使用,但建模方法具有几个限制。该语言仅限于表示任务中的专家行为。另外,GOMS模型不支持对较低级别行为的建模,例如特定形式的视觉处理(例如,中央凹与外围)以及视觉和运动操作的并行处理。 GOMS建模的另一个主要限制是操作员时间估计是确定性的。因此,模型输出可能无法准确表示复杂任务中性能的个体差异或人类行为的随机性。基于这些限制,需要开发一种新的认知建模工具。这项研究开发了一种使用增强型GOMS语言的计算认知建模工具,可帮助复杂的系统设计人员评估由自动化引起的人为性能错误的可能性。该工具的应用侧重于商用飞机驾驶舱的自动化试点使用。 GOMS语言已扩展为可应用于此上下文。为了验证,将该工具的输出与实验数据进行了比较。预期这种方法将允许在复杂飞机系统和/或界面的设计过程中对用户行为进行准确的解释和预测。建模工具的开发包括:原型模块;用户活动流程图(AFD)开发模块; AFD到E-GOMS的语言翻译器; E-GOMSL编辑器;模型解析器和编译器;以及模型仿真工具和报告生成器。这项研究在建模工具开发中使用了Microsoft(MS)Excel和Visual Basic for Application(VBA)宏。设计者能够使用图像来定义包括视觉对象和非视觉对象(例如,听觉界面)的原型。设计人员还可以基于涉及专家操作员的认知任务分析(CTA)的结果来开发AFD。 AFD由翻译模块直接翻译为E-GOMS。或者,设计人员可以使用E-GOMS编辑器对E-GOMS代码模型进行编码。在对模型进行编码之后,可以使用解析器和编译器基于各个操作时间的随机估计和工作负载分析来获得包括任务执行时间在内的定量分析。通过这些结果和GOMSL模型,可以将模拟器用于可视化HIP流程,表示HIP中的模式并提供图形化的工作负载分析。最后,报告生成器可用于生成定量分析和仿真的摘要。;为了验证建模工具的结果,使用未来派形式的驾驶舱自动化(连续下降法( CDA)工具,用于飞行路线重新规划)。进行了一次CTA,以识别飞行员行为并生成用于验证认知模型输出的数据集。将使用CDA工具的飞行员行为的E-GOMS模型与实验数据进行了比较。结果表明,所提供的建模方法符合预期,该方法将允许对飞行员驾驶舱行为进行准确的解释和预测,并且该工具在复杂飞机系统和/或界面的设计中将非常有用。

著录项

  • 作者

    Gil, Guk-Ho.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Computer.;Engineering Industrial.;Psychology Industrial.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号