首页> 外文学位 >Laser-Driven Shock Compression Studies of Planetary Compositions.
【24h】

Laser-Driven Shock Compression Studies of Planetary Compositions.

机译:行星组成的激光驱动冲击压缩研究。

获取原文
获取原文并翻译 | 示例

摘要

The physical and chemical properties of materials are profoundly affected by high pressure and temperature and differ significantly from the behavior commonly observed at ambient conditions. Understanding the interior dynamics and evolution of planetary bodies thus requires measurement of the equations of state of materials at these extreme conditions. Experiments employing laser-driven shock compression now permit exploration of phase space spanning orders of magnitude in pressure and temperature.;Results are presented here from a suite of laser-driven shock experiments on three major mineral phases of significance to the terrestrial mantle: SiO 2, MgO and MgSiO3. New optical diagnostics, including an absolutely calibrated streaked optical pyrometry system were developed to measure shock temperatures from ∼ 4000-60,000 K. This system was applied to observe high-pressure phase transitions and melting at previously unexplored conditions.;Experiments on two polymorphs of SiO2 are used to validate experimental technique and pyrometry calibration and are compared to previous results. Data on MgO and MgSiO3 constrain controversial predications for the ultra-high pressure melt curves and support melting temperatures at the Earth's core-mantle boundary higher than most previous predictions. In the case of MgSiO3, the first observations of a distinct liquidliquid phase transformation in a silicate material are presented. Experiments on amorphous and crystalline MgSiO3 starting materials show evidence of a transition to a high-pressure liquid phase approximately 10% denser than the low-pressure counterpart. Isochemical liquid-liquid phase separation may represent a previously unrecognized means of geochemical partitioning in early planetary history. Finally, discussions of the transport properties of each material are given and it is found that all three transform to metallic liquids upon melting with high thermal and electrical conductivity, suggesting the possibility of enhanced electromagnetic coupling across the core-mantle boundary in the molten state.
机译:材料的物理和化学特性会受到高压和高温的严重影响,并且与在环境条件下通常观察到的行为有很大不同。因此,了解行星体的内部动力学和演化要求在这些极端条件下测量材料的状态方程。现在,采用激光驱动的冲击压缩实验可以探索压力和温度范围内数个数量级的相空间。此处提供了一系列激光驱动的冲击实验的结果,涉及对地幔具有重要意义的三个主要矿物相:SiO 2 ,MgO和MgSiO3。开发了新的光学诊断仪,包括绝对校准的条纹光学高温计系统,可测量约4000-60,000 K的冲击温度。该系统用于观察高压相变和在以前未探索的条件下熔化。;对SiO2的两种多晶型物的实验用于验证实验技术和高温测定法校准,并与以前的结果进行比较。关于MgO和MgSiO3的数据限制了有关超高压熔体曲线的有争议的预测,并且支持了地球芯-地幔边界处的熔融温度高于大多数先前的预测。在MgSiO3的情况下,首次观察到了硅酸盐材料中明显的液相转变。在非晶态和结晶态MgSiO3起始材料上进行的实验表明,有迹象表明,向高压液相的转变要比低压相转变约高10%。等化学液体-液相分离可能代表了早期行星历史上以前无法识别的地球化学分配手段。最后,对每种材料的传输性能进行了讨论,发现在熔化时,这三种材料均具有高的导热性和导电性,从而全部转变为金属液体,这表明在熔融状态下跨芯-壳层边界增强电磁耦合的可能性。

著录项

  • 作者

    Spaulding, Dylan Kenneth.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Geophysics.;Engineering Materials Science.;Planetology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号