首页> 外文学位 >Computational design of protein crystals: Controlling macroscopic molecular orientation through protein engineering.
【24h】

Computational design of protein crystals: Controlling macroscopic molecular orientation through protein engineering.

机译:蛋白质晶体的计算设计:通过蛋白质工程控制宏观分子取向。

获取原文
获取原文并翻译 | 示例

摘要

Computational protein design algorithms rapidly identify amino acid sequences consistent with a target protein fold. Given protein function is dictated by fold, through protein design, it is possible to engineer protein functionality, structure and assembly. Despite many advances in protein design methodology, the de novo design of a protein crystal lattice has yet to be conducted. Protein crystallography is the centerpiece of structural biology, however realization of diffraction quality crystals can be difficult to almost impossible in some cases. In addition to an inherent importance in structure determination, protein crystallization has the potential to be leveraged into materials with well-defined order. As a result, ab initio protein crystal design has the potential to alleviate difficulties associated with protein crystallization and develop new nanostructured materials. In this thesis a computational energy landscape approach for designing protein crystals was developed and experimentally tested. A three-helix coiled-coil protein was designed de novo to form a polar three-dimension crystal consistent with the "honey-comb" P6 space group. A high-resolution x-ray structure of the designed protein crystal revealed remarkable precision compared to the computational model. The approach has been expanded to more complex single-chain four-helix bundle protein, that has been previously designed to selectively bind a non-biological, non-linear optical cofactor. The ultimate goal of the project is to crystal this protein into a highly ordered, polar space group. Subsequently, orientating the cofactor in a high-density, polar, three-dimensional arrangement and achieving a nonlinear optical biomaterial.
机译:计算蛋白质设计算法可快速识别与目标蛋白质折叠倍数一致的氨基酸序列。给定蛋白质功能由折叠决定,通过蛋白质设计,可以工程化蛋白质功能,结构和组装。尽管蛋白质设计方法学已取得了许多进步,但蛋白质晶格的从头设计尚未进行。蛋白质晶体学是结构生物学的核心,但是在某些情况下很难或几乎不可能实现具有衍射质量的晶体。除了在结构确定中固有的重要性外,蛋白质结晶还具有被利用到具有明确顺序的材料中的潜力。结果,从头算起蛋白质晶体的设计具有缓解与蛋白质结晶有关的困难并开发新的纳米结构材料的潜力。本文提出了一种设计蛋白质晶体的计算能态方法,并进行了实验测试。从头设计了一个三螺旋卷曲螺旋蛋白,以形成与“蜂巢状” P6空间群一致的极性三维晶体。与计算模型相比,所设计的蛋白质晶体的高分辨率x射线结构显示出显着的精度。该方法已扩展到更复杂的单链四螺旋束蛋白,该蛋白先前已设计为选择性结合非生物,非线性光学辅因子。该项目的最终目标是将这种蛋白质结晶成高度有序的极性空间群。随后,将辅助因子以高密度,极性,三维排列定向,并获得非线性光学生物材料。

著录项

  • 作者

    Lanci, Christopher J.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Chemistry Biochemistry.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号