首页> 外文学位 >Discrete Element Modeling of Impact Damage on Thermal Barrier Coatings
【24h】

Discrete Element Modeling of Impact Damage on Thermal Barrier Coatings

机译:隔热涂层冲击损伤的离散元建模

获取原文
获取原文并翻译 | 示例

摘要

Natural gas turbines have become an increasingly important part of the energy landscape in the United States, currently accounting for 19% of all electricity production. Efforts to increase thermal efficiency in gas turbines has led to the adoption of highly porous ceramic thermal barrier coatings (TBCs), which are susceptible to erosion and foreign object impact damage. Despite significant investment to improve the design of TBCs, few numerical tools exist which are capable of both accurately capturing the specific failure mechanisms inherent to TBCs and iterating design parameters without the requirement for coupled experimental data.;To overcome these limitations, a discrete element model (DEM) was created to simulate the microstructure of a TBC using a large-scale assembly of bonded particles. Acting as Lagrangian nodes, the particles can be combined to create accurate representations of TBC geometry and porosity. The inclusion of collision-driven particle dynamics and bonds derived from displacement-dependent force functions endow the microstructure model with the ability to deform and reproduce damage in a highly physical manner. Typical TBC damage mechanisms such as compaction, fracture and spallation occur automatically, without having to tune the model based on experimental observation. Therefore, the first order performance of novel TBC designs and materials can be determined numerically, greatly decreasing the cost of development.;To verify the utility and effectiveness of the proposed damage model framework, a nanoindentation materials test simulation was developed to serve as a test case. By varying model parameters, such as the porosity of the TBC and maximum applied indenter force, nanoindentation data from more than one hundred distinct permutations was gathered and analyzed. This data was used to calculate the elastic modulus (E) and hardness (H) of the simulated microstructure, which could then be compared to known experimental material property values. A good correlation was found between the predicted properties calculated by the model and those found through experimental nanoindentation tests. Furthermore, conforming to the benefits of DEM, the model was able to accurately recreate the same material damage characteristics observed in literature, such as the onset of inelastic deformation from fracture.
机译:天然气涡轮机已成为美国能源格局中越来越重要的一部分,目前占全部电力生产的19%。为提高燃气轮机的热效率而进行的努力已导致采用高度多孔的陶瓷热障涂层(TBC),该涂层易受腐蚀和异物撞击损坏的影响。尽管进行了大量投资来改进TBC的设计,但很少有数值工具能够准确捕获TBC固有的特定故障机制并迭代设计参数而无需耦合实验数据。为了克服这些限制,离散元素模型(DEM)的创建是为了使用大量结合颗粒来模拟TBC的微观结构。充当拉格朗日节点,可以将这些粒子合并以创建TBC几何形状和孔隙率的准确表示。包含碰撞驱动的粒子动力学和源自与位移有关的力函数的键,使微观结构模型能够以高度物理的方式变形和再现损伤。典型的TBC损坏机制(例如压实,断裂和剥落)会自动发生,而无需根据实验观察来调整模型。因此,可以通过数值确定新型TBC设计和材料的一阶性能,从而大大降低了开发成本。为了验证所提出的损伤模型框架的实用性和有效性,开发了一种纳米压痕材料测试模拟作为测试案件。通过改变模型参数,例如TBC的孔隙率和最大施加的压头力,可以收集和分析来自一百多个不同排列的纳米压痕数据。该数据用于计算模拟微结构的弹性模量(E)和硬度(H),然后可以将其与已知的实验材料性能值进行比较。在模型计算出的预测特性与通过实验纳米压痕测试发现的特性之间发现了良好的相关性。此外,符合DEM的优点,该模型能够准确地重建文献中观察到的相同的材料破坏特征,例如断裂引起的非弹性变形。

著录项

  • 作者

    Minor, Peter Michel.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mechanical engineering.;Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号