首页> 外文学位 >Direct current resistivity method: Data acquisition, forward modeling and inversion.
【24h】

Direct current resistivity method: Data acquisition, forward modeling and inversion.

机译:直流电阻率法:数据采集,正演模拟和反演。

获取原文
获取原文并翻译 | 示例

摘要

To reduce the null space of a model, more data are collected according to the analysis based on previous data. This process is repeated until the null space of a model can not be further reduced given a noise level of the data. The system is linear, or can be linearized. The null space is found by the singular value decomposition (SVD) analysis of the sensitivity matrix, Suppose that there are a large number of redundant data we can potentially collect, this adaptive data acquisition approach collects much less redundant data to get an inversion result which can be got from all possible data. This approach is efficient especially when there are potentially unlimited number of data. An example is given based on direct current resistivity (DC) resistivity using one-dimensional (1D) model.; Given a total of P electrodes, the dimension of the data space for dipole-dipole DC resistivity measurements is shown as [P*(P-3)]/2 + 1. One of bases of the data space is given. Data independence analysis among commonly used dipole-dipole measurement arrays, known as "skips", is given.; The standard approach in dipole-dipole DC resistivity forward modeling is to find the potentials resulting from a current dipole by solving a set of linear equations for this dipole. For N electrodes, the number of sets of linear equations to solve can be as large as N*(N-1)/2. For large numbers of current dipoles, this approach is not computationally efficient. By first computing only single current source (pole) data, then combining these data into dipole-dipole data, the maximum number of sets of linear equations that need to solved is reduced to N. Compared to conventional methods, this method is much more efficient in cases where we have large numbers of different dipoles. Comparison between this approach and the standard approach shows no loss of accuracy with computing speeds increased by up to 90%.; To address the non-uniqueness of a model, regularization terms are normally used during the inversion process to find the best model based on a priori information or model assumptions. One kind of most commonly used regularization is the smoothness constraint. However, if sharp resistivity contrasts exist within the earth, inversions with smoothness constraints may fail to converge or may yield suboptimal results. As the presence or location of sharp contrast boundaries is normally unknown, it is in general impossible to apply the optimal constraints prior to the inversion. An algorithm is presented to locate the possible sharp contrast boundaries as part of the inversion through iterative updates of smoothness constraints and allow significant improvement of the final image of subsurface properties.
机译:为了减少模型的空白空间,根据基于先前数据的分析,收集了更多数据。重复该过程直到给定数据的噪声水平不能进一步减小模型的零空间。该系统是线性的,或者可以线性化。通过对敏感度矩阵进行奇异值分解(SVD)分析可以找到零空间,假设有大量潜在的冗余数据可以收集,这种自适应数据采集方法收集的冗余数据要少得多,从而获得反演结果。可以从所有可能的数据中获取。这种方法特别有效,尤其是在可能存在无限数量的数据时。给出了基于一维(1D)模型的直流电阻率(DC)电阻率的示例。给定总共P个电极,用于偶极-偶极DC电阻率测量的数据空间的尺寸显示为[P *(P-3)] / 2 +1。给出了数据空间的基础之一。给出了常用的偶极子-偶极子测量阵列之间的数据独立性分析,称为“跳跃”。偶极-偶极子直流电阻率正向建模的标准方法是,通过求解该偶极子的线性方程组,找到由电流偶极子产生的电势。对于N个电极,要求解的线性方程组的数量可能多达N *(N-1)/ 2。对于大量的电流偶极子,这种方法在计算上效率不高。通过首先仅计算单个电流源(极点)数据,然后将这些数据组合成偶极子-偶极子数据,需要求解的线性方程组的最大数量减少为N。与传统方法相比,此方法效率更高如果我们有大量不同的偶极子。与标准方法的比较表明,计算速度提高了90%,不会降低准确性。为了解决模型的非唯一性,通常在反演过程中使用正则项来根据先验信息或模型假设找到最佳模型。一种最常用的正则化是平滑度约束。但是,如果地球内部存在明显的电阻率差异,则具有平滑度约束的反演可能无法收敛或产生次优结果。由于通常不知道尖锐的对比边界的存在或位置,因此通常不可能在反演之前应用最佳约束。提出了一种算法,可通过对平滑度约束进行迭代更新来定位可能的尖锐对比度边界,作为反演的一部分,并允许显着改善地下属性的最终图像。

著录项

  • 作者

    Wei, Shan.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号