首页> 外文学位 >Physical properties of magnetic as-grown and oxygen annealed SnO2:Co thin films.
【24h】

Physical properties of magnetic as-grown and oxygen annealed SnO2:Co thin films.

机译:磁性生长和氧退火的SnO2:Co薄膜的物理性质。

获取原文
获取原文并翻译 | 示例

摘要

Dilute magnetic semiconductor oxides are complex systems in which ferromagnetic and semiconducting properties coexist, potentially making these materials suitable for Spintronics applications. Understanding the fundamental physical processes taking place in these intricate materials could offer a better way to implement these structures into real life Spintronic devices. This dissertation is based on the study of the physical properties of a magnetic oxide system, namely SnO2 thin films doped with a few atomic percent Co, grown by two different methods.;The ultimate goal of this study is to understand the physical mechanisms of high temperature ferromagnetism (RTFM) in SnO2-delta:Co. Two different methods for growing epitaxial SnO2-delta: Co thin films were employed: pulsed laser deposition (PLD) and RF Sputtering. In both cases, films were deposited on R-cut Al2O3 substrates under well controlled growth conditions in order to produce epitaxial thin films which behave ferromagnetically at room temperature and are semiconducting. Detailed structural and magnetic characterization demonstrates that PLD SnO 2-delta:Co films grown under optimal oxygen pressure are single phase SnO2 with no presence of Co-based nanoclusters in the oxide matrix. Moreover, a direct relationship between structure, resistivity and magnetization is demonstrated, the number of structural defects influencing greatly the electromagnetic properties of the studied materials. Highly crystalline samples have a larger resistivity than less ordered materials. In addition, films grown with an optimal deposition rate have a saturation magnetization that is comparable to the Co2+ low spin state (1&mgr;B/Co). This is consistent with the XPS measurements which suggest that the valence of Co in SnO2 is +2, proving that Co2+ ions substitute for octahedral Sn4+ ions in the SnO2 lattice. Temperature dependent magnetic investigations indicate the presence of a granular-type magnetism, which is believed to occur due to formation of small Co-doped SnO 2 grains with different particle sizes and blocking temperatures, existing in a dielectric matrix. Annealing samples in O2 enhances the ferromagnetism dramatically due to the strong intergranular interaction produced after the thermal treatment. Electrical transport data reveal there is a hopping-type activated conduction mechanism up to room temperature. Non-diffusive electrical transport is observed up to 350 K.;The study done on RF sputtered films deposited by two methods: RF co-sputtering and sputtering from a 5 at.% Co -- doped target, has shown that by changing the deposition parameters, one can produce films which are highly crystalline and insulating, some of which exhibit a paramagnetic signature, originating from the presence of noninteracting Co2+ ions.;It was concluded that the magnetism in sputtered SnO2:Co thin films is not carrier mediated but is due to the superexchange interaction which couples the nearest neighbor Co spins antiferromagnetically, depending on the local lattice distortions and the spin environment. The moments per Co ion in these films determined from magnetic measurements are lower than the theoretical value of low spin state Co2+ ions. Moreover, XPS and TEM analysis suggests that Sn4+ is substituted by Co 2+ ions. Annealing some of the samples in oxygen environment modifies their structure and enhances the magnetic moment per Co ion. The sputtered materials studied in this project may not be suitable for Spintronics applications since magnetism is not carrier mediated due to the very low carrier concentration achieved in these samples. The deposition process was found to be unreliable because of the difficulty to control the growth. This yielded discrepancies in the structural and magnetic properties, characteristics that will be outlined in this thesis.
机译:稀磁性半导体氧化物是复杂的系统,其中铁磁和半导体特性共存,有可能使这些材料适合自旋电子应用。了解这些复杂材料中发生的基本物理过程可能会为将这些结构实现到实际的Spintronic设备中提供更好的方法。本论文是基于对两种不同方法生长的磁性氧化物体系的物理性质的研究,即掺有少量原子百分比的Co的SnO2薄膜。本研究的最终目的是了解高氧的物理机理。 SnO2-δ:Co中的高温铁磁(RTFM)。采用两种不同的方法生长外延SnO2-δ:Co薄膜:脉冲激光沉积(PLD)和RF溅射。在这两种情况下,都在控制良好的生长条件下将膜沉积在R型切割的Al2O3衬底上,以生产在室温下具有铁磁性能并且是半导体的外延薄膜。详细的结构和磁特性表明,在最佳氧气压力下生长的PLD SnO2-δ:Co膜是单相SnO2,在氧化物基质中不存在基于Co的纳米团簇。而且,证明了结构,电阻率和磁化强度之间的直接关系,结构缺陷的数量极大地影响了所研究材料的电磁性能。高结晶度样品的电阻率要高于无序排列的材料。另外,以最佳沉积速率生长的膜具有的饱和磁化强度可与Co2 +低自旋态(1mgB / Co)相媲美。这与XPS测量结果一致,XPS测量结果表明SnO2中Co的价为+2,证明Co2 +离子替代了SnO2晶格中的八面体Sn4 +离子。依赖温度的磁研究表明存在粒状磁性,据信这是由于形成于电介质基质中的,形成了具有不同粒径和阻挡温度的Co掺杂的SnO 2小晶粒而引起的。 O2中的退火样品由于热处理后产生的强烈的晶间相互作用而极大地增强了铁磁性。电传输数据显示存在高达室温的跳跃型激活传导机制。观察到高达350 K的无扩散电传输;对通过两种方法沉积的RF溅射膜进行的研究:RF共溅射和从掺有5 at。%Co的靶材进行溅射,表明通过改变沉积参数,可以生产出具有高度结晶性和绝缘性的薄膜,其中一些薄膜表现出顺磁性特征,这是由于非相互作用的Co2 +离子的存在而引起的。得出结论:溅射的SnO2:Co薄膜中的磁性不是载体介导的,而是由于超交换相互作用,耦合最邻近的Co逆铁磁旋转,取决于局部晶格畸变和自旋环境。由磁性测量确定的这些膜中每个Co离子的矩低于低自旋态Co2 +离子的理论值。此外,XPS和TEM分析表明Sn4 +被Co 2+离子取代。在氧气环境中对一些样品进行退火会改变其结构并增强每个Co离子的磁矩。该项目中研究的溅射材料可能不适合自旋电子学应用,因为磁性不归因于载流子,因为这些样品中的载流子浓度非常低。由于难以控制生长,发现沉积过程不可靠。这导致结构和磁性能的差异,这些特性将在本文中概述。

著录项

  • 作者

    Stoian, Gratiela M.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号